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Abstract
Procrustes analysis is a useful technique useful to measure, compare shape differences and estimate a mean

shape for objects; however it is based on a least squares criterion and is affected by some outliers. Therefore,
we propose two generalized Procrustes analysis methods based on M-estimation and least median of squares
estimation that are resistant to object outliers. In addition, two algorithms are given for practical implementation.
A simulation study and some examples are used to examine and compared the performances of the algorithms
with the least square method. Moreover since these resistant GPA methods are available for higher dimensions,
we need some methods to visualize the objects and mean shape effectively. Also since we have concentrated on
resistant fitting methods without considering shape distributions, we wish to shape analysis not be sensitive to
particular model.

Keywords: generalized Procrustes analysis, least median of squares estimator, least squares,
M-estimation, mean shape, resistant, shape analysis

1. Introduction

The shape is all geometrical information that remains when location, size and rotational effects are
filtered from an object (Kendall, 1984). Two objects have the same shape if they can be translated,
scaled and rotated to each other such that they match exactly. Procrustes analysis is an important tool
for estimating a mean shape as well as measuring, describing and comparing the shapes of objects in
many disciplines.

When several objects are fitted using Procrustes analysis the method has been called generalized
Procrustes analysis (GPA) (Gower, 1975); however, the method has been called ordinary Procrustes
analysis (OPA) when a single objects is fitted to one other. Since the methods use a least squares
(LS) technique, they are not resistant to landmarks or object outliers. We consider procedures that are
not sensitive to these outliers. Verboon and Heiser (1992) proposed the method using M-estimator in
OPA, in this paper we produce the theorem for estimating parameters on high dimension and Dryden
and Walker (1999) adapted the least median of squares (LMS) estimator.

In GPA, we propose two algorithms, calling them M GPA and LMS GPA algorithms, having
resistant property in low concentration (which implies the data with large variability) as well as high
concentration data (which implies the data with small variability) with several object outliers. We
then compare these methods with LS method by visualizing the estimated mean shapes. A simulation
and some examples is used to demonstrate the performances of the algorithms explicitly.
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2. Procrustes analysis

Procrustes analysis is a very useful tools to analyze landmark data and involves fitting the objects
using similarity transformations to be as close as possible by minimizing the sum of squared Euclidean
distances. There are two techniques are two techniques in Procrustes analysis. One is OPA, which is
used for fitting and comparing two configurations. Another is GPA for obtaining a mean shape and to
explore the structure of shape variability in a dataset of more than two configurations.

Consider two centered k×m matrices X1 and X2 of coordinates from k landmarks in m dimensions.
The estimation of α,Γ, and β by OPA method based on LS (LS OPA) is carried out by minimizing the
squared Euclidean distance

O(X1,X2) =
∣∣∣∣∣∣X2 − βX1Γ − 1kα

T
∣∣∣∣∣∣2 , (2.1)

where ||A|| =
√

tr(AT A), α is an m× 1 location, Γ is an m×m rotation such that |Γ| = 1 and β > 0 is a
scale parameter (Dryden and Mardia, 2016).

Consider GPA method by LS (LS GPA) with n ≥ 2 configurations of k landmarks in m ≥ 2
dimensions. Let k × m configurations X1,X2, . . . ,Xn be centered and scaled. We wish to minimize
following objective function,

G(X1, . . . ,Xn) =
1
n

n−1∑
i=1

n∑
j=i+1

∣∣∣∣∣∣∣∣(βiXiΓi + 1kα
T
i

)
−

(
β jX jΓ j + 1kα

T
j

)∣∣∣∣∣∣∣∣2
=

n∑
i=1

∣∣∣∣∣∣∣∣(βiXiΓi + 1kα
T
i

)
− µ

∣∣∣∣∣∣∣∣2 , (2.2)

subject to a constraint on the centroid size of the mean shape µ,

C(µ) = ||Cµ|| = 1,

where αi is location, Γi is rotation such that |Γ| = 1, βi > 0 is scale, i = 1, . . . , n, C(µ) is the centroid
size, and C is the k × k centering matrix.

Then the solution to the minimization of equation (2.2) over µ is given by (Dryden and Mardia,
2016)

µ̂ =
1
n

n∑
i=1

(
β̂iXiΓ̂i + 1kα̂

T
i

)
. (2.3)

An explicit eigenvector solution to the mean shape for two dimensional data can be found as
the complex eigenvector corresponding to the largest eigenvalue of the complex sum of squares and
products matrix (Kent, 1994). The Procrustes mean shape µ̂ has to be found iteratively for m ≥ 3
dimensional data. The GPA algorithm of Gower (1975), which is modified by Ten Berge (1977), is
useful for a practical implementation when the objects are in m > 2 dimensions.

3. Resistant Procrustes analysis

3.1. M and LMS OPA

The LS OPA method in our the fitting problem is not resistant since it is badly affected by landmark
outliers; therefore, we need some resistant fitting methods. These methods have been studied for
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appropriate fit of OPA in shape analysis. In particular, Verboon and Heiser (1992) suggested a resistant
fit based on M-estimator. However, the procedure may not work well when a scale parameter is
introduced and location is not considered. We would like to consider the fitting under the full set
of Euclidean similarity transformations in our application. Dryden and Walker (1999) also adapt the
LMS of Rousseeuw (1984) for shape analysis (LMS OPA).

Now we describe resistant ordinary Procrustes analysis using M-estimator (M OPA). Let two
matrices X1 and X2 denote configurations of k landmarks (k ≥ 3). Recall that the object X1 can be
fitted onto another object X2 by minimizing objective function, O(α,Γ, β), defined as

O(α,Γ, β) =
k∑

i=1

ρ(||ri||), (3.1)

where residual ri = x(2)i − βΓT x(1)i − α, x(1)i, and x(2)i are vectors of ith landmark of X1 and X2
respectively, and α is a location vector, Γ rotation matrix and β positive scale parameter, and ρ(·)
represents a loss function.

Then, Verboon and Heiser (1992) considered the use of Huber’s function

ρ(||r||) =


||r||2

2
, ||r|| ≤ c,

c||r|| − c2

2
, ||r|| > c

(3.2)

or biweight function,

ρ(||r||) =


c2

1 − (
1 − ||r||

2

c2

)3 /6, ||r|| ≤ c,

c2

6
, ||r|| > c

(3.3)

as a loss function in (3.1) where c is some tuning constant. For large values of the tuning constant c,
objective function reduces to LS OPA.

Theorem 1. Let two matrices X1 and X2 denote configurations of k ≥ 3 landmarks in m ≥ 2
dimensions. M OPA estimates of α,Γ, and β can be found out by minimizing the objective function
(3.1).

Then the solutions are written as

α̂ =

(
XT

2 − β̂Γ̂T XT
1

)
W1k

1T
k W1k

, (3.4)

Γ̂ = UVT , (3.5)

β̂ =
tr

[
Γ̂T XT

1 W
(
Ik −

1k1T
k W

1T
k W1k

)
X2

]
tr

[
XT

1 W
(
Ik −

1k1T
k W

1T
k W1k

)
X1

] , (3.6)

where W = diag(w1, . . . ,wk) is a diagonal matrix with weight wi = ψ(||ri||)/||ri||, i = 1, . . . , k, ψ(·) =
ρ(·)′, the derivative of ρ(·), and U,V ∈ S O(m) satisfying the singular value decomposition

XT
1 W

Ik −
1k1T

k W
1T

k W1k

 X2 = UDλVT , (3.7)
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with Dλ diagonal matrix of singular values.

The objective function O(α,Γ, β) of Theorem 1 can be minimized by an algorithm that is based
on the method of iteratively reweighted least squares. There are two steps in the algorithm. First, the
weights are calculated by wi = ψ(||ri||) /||ri|| with ρ(·)′ = ψ(·) . We use the weight matrix W = 1k as
initial values. Next the parameters α,Γ, and β are calculated by weighted least squares as given by
equations (3.4), (3.5), and (3.6), respectively. We stop the iteration if the conditions |O(s+1) −O(s)| < ϵ
is satisfied, where O(s) is the values of objective function O(α,Γ, β) on sth iteration.

Another resistant estimator is the LMS estimator, which has a breakdown of almost 50% (Rousse-
euw, 1984) as an alternative to the repeated median. The objective function which Dryden and Walker
(1999) have considered, is defined by

s2 (E) = median
(
||(E)1||2, . . . , ||(E)k ||2

)
, (3.8)

where E is an error matrix of regression equation

X2 = g (X1) + E,

the elements of g ∈ G, a transformation group, are referred to as the similarity transformation param-
eters α, Γ, and β, and (E)i denotes ith row of E, i = 1, . . . , k.

For practical implementation, they considered the exhaustive selection, random selection such as
PROGRESS and intelligent subset method.

3.2. M and LMS GPA

Unlike LS method, resistant methods limit the influence of objects outliers and the resulting fit is
closer to the true mean shape. Rohlf and Slice (1990) considered GPA fit using the RM technique and
gave an algorithm for resistant shape fitting. They compared LS GPA to their methods with wing data
from mosquitoes. Er (1998) suggested a robust GPA method via the EM algorithm and compared the
method with LS GPA by visualizing the estimates of the mean shape. In this section, we suggest two
resistant GPA fitting algorithms based on the M and LMS estimator that are called the M GPA and
LMS GPA algorithms.

First we introduce a resistant M GPA algorithm based on the M OPA fit method. Let n matrices
X1,X2, . . . ,Xn be configurations of k ≥ 3 landmarks in m ≥ 2 dimensions. Then we can find out the
Procrustes mean shape µ̂ by minimizing objective function of the form

O(αi,Γi, βi) =
n∑

i=1

ρ (||Ri (Xi,µ) ||) , (3.9)

subject to C(µ) = 1, where ρ(·) is the loss function like equations (3.2) and (3.3), and Ri (Xi,µ) denotes
the residual matrix after OPA fit of Xi onto the mean shape, that is, Ri (Xi,µ) = µ − βiXiΓi − 1kα

T
i ,

i = 1, . . . , n.
The estimate can be found by differentiation the objective function with respect to µ and setting

the derivative to zero,

∂O(αi,Γi, βi)
∂µ

= 0,
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then the solution can be written as

µ̂ =

∑n
i=1

(
wiβ̂iXiΓ̂i + wi1kα̂

T
i

)
1T

n W1n
, (3.10)

where W = diag(w1, . . . ,wn) is weight diagonal matrix with wi = ψ(||Ri||)/||Ri||, i = 1, . . . , n, and
ψ(·) = ρ(·)′, i.e., the derivative of ρ(·).

For our practical implementation, we can adapt M OPA method to GPA procedures to estimate
similarity parameters αi,Γi, and βi on the method of iteratively reweighted least squares. Therefore,
the parameters are estimated by fitting each object onto the mean shape via M OPA method. After
that, the Procrustes mean shape can be obtained from equation (3.10). The algorithm is as follows.

Algorithm 1. (M GPA algorithm) Consider a set of k × m configuration matrices X1,X2, . . . ,Xn.
For our convenience, we assume that n configurations are centered using Helmert sub-matrix H and
scaled so that ||Xi|| = 1.

Step 1: Fit each Xi onto µ̂(i) using M OPA method, where µ̂(i) is initial Procrustes mean shape except
ith object Xi, i = 1, . . . , n.

Step 2: Calculate the residual Ri(Xi, µ̂(i)), and the weights wi = ψ(||Ri||)/||Ri|| are obtained, i =
1, . . . , n.

Step 3: Find the estimate of mean shape from equation (3.10).

Step 4: Replace µ̂(i) with µ̂, repeat steps 1 to 3, until the criterion |O(s+1) −O(s)| < ϵ is satisfied, where
O(s) is the value of objective function O(αi,Γi , βi) on sth iteration.

To achieve resistance, we find the n similarity parameters (αi,Γi, βi) separately using M OPA
method, and update the Procrustes mean shape in steps 2 and 3. We do not show that the objective
function reduces; however, the algorithm finds the solutions quickly in practice.

Next we develop resistant GPA algorithm based on the LMS estimator. Consider the situation
where we have n configuration of k landmarks in m dimensions X1,X2, . . . ,Xn. Then we can fit the
each configuration Xi onto mean shape. That is,

µ = gi(Xi) + Ei,

where the elements of gi are the similarity transformation parameters αi, Γi, and βi, and Ei is an error
matrix, i = 1, . . . , n. Then the LMS objective function can be defined by

median
(
||E1||2, ||E2||2, . . . , ||En||2

)
. (3.11)

We can find the estimate of mean shape µ̂ by minimizing the objective function.
As the LMS OPA, this algorithm proceeds by repeatedly drawing subsamples of p different ob-

jects. For our implementation we use subsamples chosen by random selection method. The algorithm
implemented in PROGRESS (Program for Robust reGRESSion) can require large computation time
in our GPA procedures. PROGRESS algorithm was proposed to calculate the parameters by resam-
pling method (Rousseeuw and Leroy, 1987). Therefore, we use a further selection method with the
criterion based on the centroid size of randomly chosen subsample. Additionally, we exclude the sub-
sample if the values of centroid size of the subsample are too small or large. The algorithm can be
described as follows.
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Table 1: Norms of the differences of between true mean and estimated mean shapes

ϵ
High Low

LS M LMS LS M LMS
0.1 0.0292 0.0164 0.0274 0.0728 0.0432 0.0643
0.2 0.0365 0.0283 0.0314 0.0785 0.0595 0.0530
0.3 0.0475 0.0347 0.0329 0.0905 0.0678 0.0757
0.4 0.0598 0.0376 0.0582 0.1346 0.0951 0.0522
0.5 0.0505 0.0367 0.0416 0.1350 0.0804 0.0885

LS = least squares; M =M-estimator; LMS = least median of squares.

Algorithm 2. (LMS GPA Algorithm) Consider a set of k×m configuration matrices X1,X2, . . . ,Xn.
We assume that n configurations are centered and scaled. Let each subsample be Y j for j = 1, . . . , ns

where ns =
(

n
p

)
is the total number of subsamples.

Step 1: Draw a subsample Y j of p different objects X1,X2, . . . ,Xp from n configurations without
replacement.

Step 2: Check chosen subsample Y j with size criterion, if satisfied, estimate the parameters gi j from
fitting Y j onto µ by LS GPA, where gi j, i = 1, . . . , n is the similarity parameters for Procrustes
fit of each Xi onto µ in drawing jth subsample, otherwise, go step 1.

Step 3: Determine the corresponding LMS objective function in equation (3.11) with respect to the
whole n objects.

Step 4: Repeat steps 1 to 3, and choose least one of among the objective function’s values. Then the
estimate of mean shape is defined as

µ̂ = arg min
[
median

(
||E1||2, ||E2||2, . . . , ||En||2

)]
.

This algorithm requires more n−p residuals in step 3. So we calculate the residuals using similarity
parameters corresponding to minimum of p residuals in step 2. In practice, our random selection
method is implemented with smaller subsamples than ns. The algorithm does not find the Procrustes
mean shape faster than M GPA; however, its implementation works well.

4. Examples

We investigate the sensitivity of LS and the resistance of M and LMS GPA methods, and compare
their performance by visualizing differences between estimated mean shapes.

A random sample of 20 diamonds are simulated. Each landmark is simulated from mixture models
of bivariate normal distributions with different covariances with data generated from (1−ϵ)BN(µ,Σ1)+
ϵBN(µ,Σ2), where µ is true mean shape and Σ1 = 0.2I2,Σ2 = 1.0I2 in High of Table 1 and Σ1 =

0.6I2,Σ2 = 2.0I2 in Low of Table 1. The simulation results of Table 1 show that two resistant GPA
methods have smaller norm values of the residual than LS. As the graphs (b), (c), and (d) of Figure 1
visualize, M and LMS GPA methods also yield more close estimates to the true mean shape than LS
result.

Figure 2(a) shows the centered and scaled landmarks for the T2 mouse vertebrae data (with high
concentration) with four artificial object outliers. Graph (b) indicates that the LS GPA method pro-
duces a Procrustes mean shapes affected by to object outliers. Figure 2(c) and (d) shows that the
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(a) (b)

(c) (d)

Figure 1: Procrustes mean shapes displayed with ϵ = 0.2 in low data set of Table 1; (a) the centered and scaled
landmarks and true mean shape, (b) LS, (c) M, and (d) LMS, where the solid line is true mean shape and the
dotted line is the estimates of mean shape. LS = least squares; M =M-estimator; LMS = least median of squares.

estimates by M and LMS GPA methods are closer to the true mean shapes; therefore, the resistant
algorithms work well for the estimated mean shape of Figure 2.

Next, consider the 30 handwritten digit 3 data with low concentration and eight artificial object
outliers. Graph (b) of Figure 3 shows that the LS GPA method is affected by the object outliers. Graph
(c) and (d) that M and LMS GPA algorithms give better Procrustes mean shapes than LS GPA despite
the configuration data set having a low concentration and some object outliers. Table 2 shows how the
weights by M GPA fit control these object outliers effectively when the objects which have a relatively
larger residual than the others with smaller weights (wi = 0.131).
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(a) (b)

(c) (d)

Figure 2: Procrustes mean shapes for 23 T2 mouse vertebrae data; (a) landmarks for data with 4 object outliers,
(b) LS, (c) M, and (d) LMS, where the solid line is Procrustes mean shapes for the data without object outliers
and dotted line is that for the data with object outliers. LS = least squares; M =M-estimator; LMS = least median

of squares.

5. Concluding remarks

We have proposed two resistant GPA fitting methods to estimate mean shape avoiding influence of ob-
ject outliers. M GPA algorithm has found the Procrustes mean shape quickly; however, the LMS GPA
algorithm takes more time to compute than M GPA. In LMS GPA, the size criterion has reduced its
iteration number effectively; however, the algorithm was somewhat expensive to compute as random
selection method.

We need methods that can visualize the objects and mean shape effectively since the OPA and GPA
methods are available for higher dimensions. Multivariate techniques such as principle components
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(a) (b)

(c) (d)

Figure 3: Procrustes mean shapes for 30 handwritten digit 3 data; (a) landmarks for data with 8 object outliers,
(b) LS, (c) M, and (d) LMS, where the solid line is Procrustes mean shapes for the data without object outliers
and a dotted line is for the data with object outliers. LS = least squares; M =M-estimator; LMS = least median

of squares.

analysis can be an appropriate method. Resistant fitting methods have been studied without consid-
ering shape distributions; however, it is important that the shape analysis should not be sensitive to a
particular model such as the complex Bingham distribution or the complex angular central Gaussian
distribution. These robustness problem is an issue for further research. An improved method reducing
computational time is needed since the LMS GPA algorithm was somewhat expensive to compute as
random selection method. We often wish to examine the structure of shape variability after obtaining
a mean shape; therefore, a suitable method is needed to investigate the shape variability in a tangent
space.
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Table 2: Norms of residuals and weights after LS, M, and LMS GPA fits
LS M LMS
||Ri || ||Ri || wi ||Ri ||

0.507 0.275 1.283 0.327 0.131 0.757 0.900 0.279
0.325 0.258 0.594 0.279 0.484 0.726 0.600 0.269
0.240 0.507 0.453 1.283 0.562 0.131 0.202 0.844
0.278 0.406 0.359 0.545 0.805 0.694 0.233 0.297
0.430 0.298 0.415 0.325 0.646 0.766 0.330 0.286
0.507 0.203 1.283 0.426 0.131 0.576 0.941 0.174
0.327 0.281 0.267 0.322 0.799 0.806 0.279 0.427
0.507 0.302 1.283 0.228 0.131 0.782 1.011 0.182
0.264 0.350 0.331 0.473 0.669 0.598 0.374 0.263
0.507 0.206 1.283 0.246 0.131 0.792 1.011 0.339
0.241 0.305 0.393 0.389 0.772 0.636 0.289 0.185
0.507 0.507 1.283 1.283 0.131 0.131 1.011 1.011
0.393 0.255 0.430 0.287 0.619 0.776 0.242 0.231
0.264 0.507 0.539 1.283 0.485 0.131 0.168 1.011
0.287 0.284 0.264 0.275 0.733 0.784 0.365 0.203

LS = least squares; M =M-estimator; LMS = least median of squares; GPA = generalized Procrustes analysis.

Appendix: The proof of Theorem 1

Proof: The solutions can be found by differentiating objective function of equation (3.1) in Section 3
with respect to α,Γ, β and setting these derivatives to zero. First, for location parameter α,

∂O(α,Γ, β)
∂α

= 0,

it can be expressed as follows,

k∑
i=1

(
ψ(||ri||)

1
2||ri||

∂

∂α
tr

(
rT

i ri

))
= 0, (A.1)

where

∂

∂α
tr

(
rT

i ri

)
= −2x(2)i + 2βΓT x(1)i + 2α.

Then equation (A.1) can be written as

α̂ =

∑k
i=1

(
wix(2)i − βwiΓ

T x(1)i

)
∑k

i=1 wi
,

also, describing in matrix notation, we can obtain

α̂ =

(
XT

2 − βΓT XT
1

)
W1k

1T
k W1k

.

Next, for rotation matrix Γ, the solution can be found by minimizing the Lagrangian function

L =
k∑

i=1

ρ(||ri||) + tr
[
1
2
Λ

(
ΓΓT − Im

)]
,
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where (1/2)Λ is a symmetric m × m matrix of Lagrange multipliers. Differentiating the Lagrangian
function with respect to Γ, we have

∂L
∂Γ
=

k∑
i=1

(
ψ(||ri||)

1
2||ri||

∂

∂Γ
tr

(
rT

i ri

))
+ ΛΓ = 0. (A.2)

By substituting

∂

∂Γ
tr

(
rT

i ri

)
= −2βx(1)ixT

(2)i + 2βx(1)iα
T

into equation (A.2) we obtain

k∑
i=1

[
wiβ

(
−x(1)ixT

(2)i + x(1)iα
T
)]
+ ΛΓ = 0,

so in matrix notation,

XT
1 WX2 − XT

1 W1kα
T =
ΛΓ

β
. (A.3)

Substituting the estimate of α, the left hand side of equation (A.3) becomes

XT
1 WX2 − XT

1 W
1k1T

k W (X2 − βX1Γ)

1T
k W1k

= XT
1 WX2 −

XT
1 W1k1T

k WX2

1T
k W1k

+
βXT

1 W1k1T
k WX1Γ

1T
k W1k

.

Thus equation (A.3) can be written as

XT
1 W

Ik −
1k1T

k W
1T

k W1k

 X2 =
ΛΓ

β
−
βXT

1 W1k1T
k WX1Γ

1T
k W1k

=

Λ
β
−
βXT

1 W1k1T
k WX1

1T
k W1k

Γ. (A.4)

In the right hand side of equation (A.4), put

Λ

β
−
βXT

1 W1k1T
k WX1

1T
k W1k

= Q,

then,

QΓ (QΓ)T =
(
UDλVT

) (
UDλVT

)T

= UDλ

(
UT U

)
DλUT

=
(
UDλUT

) (
UDλUT

)T
, (A.5)

where U,V ∈ S O(m) satisfy the singular value decomposition

XT
1 W

Ik −
1k1T

k W
1T

k W1k

 X2 = UDλVT
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with diagonal matrix Dλ. So, by equation (A.5)

Q = UDλUT . (A.6)

Hence, by equation (A.4) and (A.6) the estimate of rotation matrix Γ̂ follows

XT
1 W

Ik −
1k1T

k W
1T

k W1k

 X2 = QΓ̂,

UDλVT = UDλUT Γ̂,

Γ̂ = UVT .

Finally, for scale parameter β, differentiating the objective function with respect to β we obtain

∂

∂β

k∑
i=1

ρ (||ri||) =
k∑

i=1

(
ψ(||ri||)

1
2||ri||

∂

∂β
||ri||2

)
= 0. (A.7)

By substituting

∂

∂β
||ri||2 = −2

[
tr

(
x(2)ixT

(1)iΓ
)]
+ 2β

[
tr

(
x(1)ixT

(1)i

)]
+ 2

[
tr

(
x(1)iα

TΓT
)]

into equation (A.7), the equation can be expressed as

β

tr
 k∑

i=1

wix(1)ixT
(1)i


 = tr

 k∑
i=1

wix(2)ixT
(1)iΓ

 − tr

 k∑
i=1

wix(1)iα
TΓT

 ,
also in matrix notation,

β
[
tr

(
XT

1 WX1

)]
= tr

(
XT

2 WX1Γ − XT
1 W1kα

TΓT
)
. (A.8)

Substituting each of the estimates of parameters α and Γ into equation (A.8), then it becomes

β
[
tr

(
XT

1 WX1

)]
= tr

XT
2 WX1Γ − XT

1 W
1k1T

k W (X2 − βX1Γ)

1T
k W1k

ΓT


= tr

XT
2 WXT

1Γ −
XT

1 W1k1T
k WX2Γ

T

1T
k W1k

+
βXT

1 W1k1T
k WX1ΓΓ

T

1T
k W1T

k

 .
Therefore,

β
[
tr

(
XT

1 WX1

)]
− β

tr XT
1 W1k1T

k WX1

1T
k W1k

 = tr
XT

2 WX1Γ −
XT

1 W1k1T
k WX2Γ

T

1T
k W1k

 .
Hence, we have

β̂ =
tr

[
ΓT XT

1 W
(
Ik −

1k1T
k W

1T
k W1k

)
X2

]
tr

[
XT

1 W
(
Ik −

1k1T
k W

1T
k W1k

)
X1

] .

�
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