DOI QR코드

DOI QR Code

가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor

  • 손성혜 (충남대학교 에너지과학기술대학원) ;
  • 서명원 (한국에너지기술연구원 기후변화연구본부) ;
  • 황병욱 (한국에너지기술연구원 기후변화연구본부) ;
  • 박성진 (한국에너지기술연구원 기후변화연구본부) ;
  • 김정환 (한국에너지기술연구원 기후변화연구본부) ;
  • 이도연 (한국에너지기술연구원 기후변화연구본부) ;
  • 고강석 (한국에너지기술연구원 기후변화연구본부) ;
  • 전상구 (한국에너지기술연구원 기후변화연구본부) ;
  • 윤성민 (한국에너지기술연구원 기후변화연구본부) ;
  • 김용구 (한국에너지기술연구원 기후변화연구본부) ;
  • 김재호 (한국에너지기술연구원 기후변화연구본부) ;
  • 류호정 (한국에너지기술연구원 기후변화연구본부) ;
  • 이영우 (충남대학교 에너지과학기술대학원)
  • Son, Seong Hye (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Seo, Myung Won (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Hwang, Byung Wook (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Park, Sung Jin (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Kim, Jung Hwan (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Lee, Do Yeon (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Go, Kang Seok (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Jeon, Sang Goo (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Yoon, Sung Min (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Kim, Yong Ku (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Kim, Jae Ho (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Ryu, Ho Jeong (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 투고 : 2018.09.14
  • 심사 : 2018.10.22
  • 발행 : 2018.12.01

초록

전 세계적으로 재생에너지의 비율이 증가함에 따라, 재생에너지로부터 생산되는 불연속적이고 간헐적인 에너지 저장 문제가 주목을 받고 있다. 다양한 에너지 저장 시스템(ESS) 중에서 $CO_2$ 메탄화 기술은 타 시스템에 비해 높은 저장 용량과 저장 기간으로 각광 받고 있다. $CO_2$ 메탄화 반응은 발열반응이며, 촉매가 낮은 온도 범위($250-500^{\circ}C$)에서 높은 활성 및 메탄 선택도를 갖는다. 기존의 고정층 방식에 비하여 유동층 반응기는 높은 열전달 특성으로 인해 발열반응에 적합하며, 열전달과 물질 전달이 유리한 장점을 갖고 있다. 본 연구에서는, 촉매 특성 평가를 위해 기포유동층 반응기(Diameter: 0.025 m, Height: 0.35 m)와 $Ni/{\gamma}-Al_2O_3$ (Ni 70% and ${\gamma}-Al_2O_3$ 30%) 촉매를 사용하였다. 반응 조건은 $H_2/CO_2$ mole ratio: 4.0-6.0, 조업온도 $300-420^{\circ}C$, 조업 압력 1-9 bar 및 $U_o/U_{mf}$ 1-5이었다. 생성 가스의 조성은 NDIR를 통해 분석하였으며, $CO_2$ 전환율은 $H_2/CO_2$ ratio, 압력, 온도가 증가함에 따라 높아지는 경향을 보였다. 이에 반해 가스유속이 빨라질수록 $CO_2$ 전환율은 떨어졌다. 최적의 운전 조건은 $H_2/CO_2$ ratio: 5, 조업온도 $400^{\circ}C$, 조업 압력 9 bar 및 $1.4-3U_{mf}$이었으며 이 때 $CO_2$ 전환율은 99.6%로 나타났다. 본 실험 촉매의 경우 장기 운전 시 촉매 성능 저하가 없이 $CO_2$ 전환율이 일정하게 유지하는 것을 확인하였다.

Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

키워드

HHGHHL_2018_v56n6_871_f0001.png 이미지

Fig. 1. Yield of methane in thermodynamic equilibrium for H2/CO2 ratio 4 [8].

HHGHHL_2018_v56n6_871_f0002.png 이미지

Fig. 2. Microscopic image of Ni/γ-Al2O3 particle.

HHGHHL_2018_v56n6_871_f0003.png 이미지

Fig. 3. Schematic diagram of the experimental apparatus.

HHGHHL_2018_v56n6_871_f0004.png 이미지

Fig. 4. Effect of temperature on CO2 conversion (H2/CO2 ratio = 4, 5, P = 1 bar, U0/Umf = 3).

HHGHHL_2018_v56n6_871_f0005.png 이미지

Fig. 5. Effect of pressure on CO2 conversion (H2/CO2 ratio = 4, 5, T = 400 ℃, U0/Umf = 3).

HHGHHL_2018_v56n6_871_f0006.png 이미지

Fig. 6. Effect of H2/CO2 ratio on CO2 conversion (T = 400 ℃, P = 3 bar, U0/Umf = 3).

HHGHHL_2018_v56n6_871_f0007.png 이미지

Fig. 7. Effect of gas velocity (U0/Umf) for CO2 conversion (H2/CO2 ratio = 4, 5, T = 400 ℃, P = 3 bar).

HHGHHL_2018_v56n6_871_f0008.png 이미지

Fig. 8. Gas composition and CO2 conversion of long term test for CO2 methanation at optimal condition (H2/CO2 ratio = 5, T = 400 ℃, P = 1 bar, U0/Umf = 1.4).

HHGHHL_2018_v56n6_871_f0009.png 이미지

Fig. 9. (a) SEM image of Ni/γ-Al2O3 catalyst before methanation. (b) SEM image of Ni/γ-Al2O3 after methanation during 30 h.

Table 1. Characteristics of catalyst and silica sand

HHGHHL_2018_v56n6_871_t0001.png 이미지

Table 2. Summary of test conditions and variables

HHGHHL_2018_v56n6_871_t0002.png 이미지

Table 3. Selectivity and yield with variation of temperature

HHGHHL_2018_v56n6_871_t0003.png 이미지

Table 4. Selectivity and yield with variation of pressure

HHGHHL_2018_v56n6_871_t0004.png 이미지

Table 5. Selectivity and yield with variation of H2/CO2 ratio

HHGHHL_2018_v56n6_871_t0005.png 이미지

Table 6. Selectivity and yield with variation of Uo/Umf

HHGHHL_2018_v56n6_871_t0006.png 이미지

참고문헌

  1. Stangeland, K., Kalai, D., Li, H. and Yu, Z., "$CO_2$ Methanation: The Effect of Catalysts and Reaction Conditions," Energy Procedia, 105, 2022-2027(2017). https://doi.org/10.1016/j.egypro.2017.03.577
  2. Meylan, F., Moreau, V. and Erkman, S., "Material Constraints Related to Storage of Future European Renewable Electricity Surpluses with $CO_2$ Methanation," Energy Policy, 94, 366-376 (2016). https://doi.org/10.1016/j.enpol.2016.04.012
  3. Meylan, F., Piguet, F. and Erkman, S., "Power-to-gas Through $CO_2$ Methanation: Assessment of the Carbon Balance Regarding EU Directives," Journal of Energy Storage, 11, 16-24(2017). https://doi.org/10.1016/j.est.2016.12.005
  4. Gotz, M., Lefebvre, J., Mors, F., McDaniel, K., Graf, F. and Bajohr, S., "Renewable Power-to-Gas: A Technological and Economic Review," Renewable Energy, 85, 1371-1390(2016). https://doi.org/10.1016/j.renene.2015.07.066
  5. Blanco, H. and Faaij, A., "A Review at the Role of Storage in Energy Systems with a Focus on Power to Gas and Long-term Storage," Renewable Sustainable Energy Rev., 81, 1049-1086(2017).
  6. Sabatier. New methane synthesis(1902).
  7. Miao, B., Ma, K. S. S., Wang, X., Su, H. and Chan, H. S., "Catalysis Mechanisms of $CO_2$ ans CO Methanation," Catal. Sci. Technol., 6, 4048-4058(2016). https://doi.org/10.1039/C6CY00478D
  8. Kim, J., Kang, S., Ryu, J., Lee, S., Kim, S. and Kim, M., "Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas (SNG) Synthetic Systems," Clean Technol, 49, 491-497(2011).
  9. Schlereth, D. and Hinrichsen, O., "A Fixed-bed Reactor Modeling Study on the Methanation of $CO_2$," Chem. Eng. Res. Des., 92, 702-712(2014). https://doi.org/10.1016/j.cherd.2013.11.014
  10. Vannice, M., "The Catalytic Synthesis of Hydrocarbons from $H_2CO$ Mixtures Over the Group VIII Metals," J. Catal., 37, 449-461(1975). https://doi.org/10.1016/0021-9517(75)90181-5
  11. Kim, S. and Koh, D., "Manufacturing Process of SNG," Korean J. Chem. Eng., 31, 65-68(2013).
  12. Yang, J. M., Kim, Y. J. and Lee, J. D., "Syngas Production by Partial Oxidation Reaction over $Ni-Pd/CeO_2-ZrO_2$ Metallic Monolith Catalyst," Korean Chem. Eng. Res., 51, 319-324 (2013). https://doi.org/10.9713/kcer.2013.51.3.319
  13. Kim, S., Yoo, Y., Kang, S., Ryu, J., Kim, J. and Kim, M., "Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor," Clean Technol, 19, 156-164(2013). https://doi.org/10.7464/ksct.2013.19.2.156
  14. Rostrup-N., Pedersen, K. and Sehested, J., "High Temperature Methanation. Sintering and Structure Sensitivity," Appl. Catal., A, 330, 134-138(2007). https://doi.org/10.1016/j.apcata.2007.07.015
  15. Koytsoumpa, E. and Karellas, S., "Equilibrium and Kinetic Aspects for Catalytic Methanation Focusing on $CO_2$ Derived Substitute Natural Gas (SNG)," Renewable Sustainable Energy Rev., 94, 536-550(2018). https://doi.org/10.1016/j.rser.2018.06.051
  16. Liu, J., Cui, D., Yao, C., Yu, J., Su, F. and Xu, G., "Syngas Methanation in Fluidized Bed for an Advanced Two-stage Process of SNG Production," Fuel Process. Technol., 141, 130-137(2016). https://doi.org/10.1016/j.fuproc.2015.03.016
  17. Seemann, M., Schildhauer, T., Biollaz, S., Stucki, S., Wokaun, A., "The Regenerative Effect of Catalyst Fluidization Under Methanation Conditions," Appl. Catal. A, 313, 14-21(2006). https://doi.org/10.1016/j.apcata.2006.06.048
  18. Olsbye, U., Moen, O., Slagtern, A. and Dahl, I., "An Investigation of the Coking Properties of Fixed and Fluid Bed Reactors During Methane-to-synthesis Gas Reactions," Appl. Catal. A, 228, 289-303(2002). https://doi.org/10.1016/S0926-860X(01)00990-5
  19. Matsuo, Y., Yoshinaga, Y., Sekine, Y., Tomishige, K. and Fujimoto, K., "Autothermal $CO_2$ Reforming of Methane over NiO-MgO Solid Solution Catalysts Under Pressurized Condition: Effect of Fluidized Bed Reactor and Its Promoting Mechanism," Catalysis Today, 63, 439-445(2000). https://doi.org/10.1016/S0920-5861(00)00489-2
  20. Perkas, N., Amirian, G., Zhong, Z., Teo, J., Gofer, Y. and Gedanken, A., "Methanation of Carbon Dioxide on Ni Catalysts on Mesoporous $ZrO_2$ Doped with Rare Earth Oxides," Catat Lett, 130, 455-462(2009). https://doi.org/10.1007/s10562-009-9952-8
  21. Aziz, A. A. M., Jalil, A. A., Triwahyono, S., Mukti, R. R., Taufiq-Yap, Y. H. and Sazegar, M. R., "Highly Active Ni-promoted Mesostrutured Silica Nanoparticles for $CO_2$ Methanation," Appl. Catal. B, 147, 359-368(2014). https://doi.org/10.1016/j.apcatb.2013.09.015
  22. Wang, Q., Rong, A., Fan, H., Meng, Y., Fang, M., Cheng, L. and Cen, K., "Enhanced Hydrogen-rich Gas Production from Steam Gasification of Coal in a Pressurized Fluidized Bed with CaO as a $CO_2$ Sorbent," Int. J. Hydrogen Energy, 39, 5781-5792(2014). https://doi.org/10.1016/j.ijhydene.2014.01.153
  23. Jiajisn, G., Yingli, W., Yuan, P., Dacheng, H., Guangwen, X. and Fabing, S., "A Thermodynamic Analysis of Methanation Reactions of Carbon Oxides for the Production of Synthetic Natural Gas," RSC Advances, 2, 2358-2368(2012). https://doi.org/10.1039/c2ra00632d
  24. Kopyscinski, J., Tilman, J. and Biollaz, S., "Methanation in a Fluidized Bed Reactor with High Initial CO Partial Pressure: Part I-Experimental Investigation of Hydrodynamics, Mass Transfer Effects, and Carbon Deposition," Chem. Eng. Sci., 66, 924-934(2011). https://doi.org/10.1016/j.ces.2010.11.042
  25. Kang, S. H., Kim, J. H., Ryu, J. H., Jeong, K. J., Yoo, Y. D. and Kim, K. J., "Catalytic Performance for the Production of Synthetic Natural Gas on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and $CO_2$," Clean. Tech., 20, 57-63 (2014). https://doi.org/10.7464/ksct.2014.20.1.057
  26. Ghaib, K., Nitz, K. and Ben-Fares, F., "Chemical Methanation of $CO_2$ : A Review," Chem. Bio. Eng. Rev., 6, 266-275(2016).