DOI QR코드

DOI QR Code

Adsorption Characteristics of Bisphenol A Using Activated Carbon Based on Waste Citrus Peel and Surface-Modified with P2O5

P2O5로 표면 개질한 폐감귤박 활성탄에 의한 Bisphenol A의 흡착 특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Kim, Myeong-Chan (Research Institute of Health & Environment, Jeju Special-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 감상규 (제주대학교 환경공학과) ;
  • 김명찬 (제주특별자치도 보건환경연구원) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2018.09.17
  • Accepted : 2018.10.12
  • Published : 2018.11.30

Abstract

The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various $P_2O_5$ concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing $P_2O_5$ concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of $P_2O_5$; however, above 1,000 mg/L of $P_2O_5$, the same amounts adsorbed at 1,000 mg/L of $P_2O_5$ were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.

Keywords

References

  1. Acosta, R., Nabarlatz, D., Sanchez-Sanchez, A., Jagiello, J., Gadonneix, P., Celzard, A, Fierro, V., 2018, Adsorption of bisphenol A on KOH-activated tyre pyrolysis char, J. Environ. Chem. Eng., 6, 823-833. https://doi.org/10.1016/j.jece.2018.01.002
  2. Asada, T., Oikawa, K., Kawata, K., Ishihara, S., Iyobe, T., Yamada, A., 2004, Study of removal effect of bisphenol-A and ${\beta}$-estradiol by porous carbon, J. Health Sci., 50, 588-593. https://doi.org/10.1248/jhs.50.588
  3. Bautista-Toledo, A., Ferro-Garcia, M. A., Rivera-Utrilla, J., Moreno-Castilla, C., Vegas-Fernandez, F. J., 2005, Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry, Environ. Sci. Technol., 39, 6246-6250. https://doi.org/10.1021/es0481169
  4. Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2005a, Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A, Chemosphere, 58, 1535-1545.
  5. Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2005b, Effect of polyphosphate on removal of endocrine -disrupting chemicals of nonylphenol and bisphenol-A by activated carbons, Water Qual. Res. J., 40, 484-490. https://doi.org/10.2166/wqrj.2005.052
  6. Choi, K. J., Kim, S. G., Roh, J. S., Shin, P. S., Lee, Y. D., Kim, C. W., 2004, Adsorption characteristics of endocrine disruptors, nonylphenol, and bisphenol-A with activated carbons, J. Korean Soc. Environ. Eng., 26, 191-199.
  7. Coughlin, R. W., Ezra, F. S., 1968, Role of surface acidity in the adsorption of organic pollutants on the surface of carbon, Environ. Sci. Technol., 2, 291-297. https://doi.org/10.1021/es60016a002
  8. Deborde, M., Rabouan, S., Duguet, J. P., Legube, B., 2005, Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors, Environ. Sci. Technol., 39, 6086-6092. https://doi.org/10.1021/es0501619
  9. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
  10. Hameed, B. H., 2007, Equilibrium and kinetics studies of 2, 4, 6-trichlorophenol adsorption onto activated clay, Colloids and Surfaces A, 307, 45-52. https://doi.org/10.1016/j.colsurfa.2007.05.002
  11. Ho, Y. S., McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  12. Howdershell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G., vom Saal, F. S., 1999, Exposure to bisphenol A advances puberty, Nature, 401, 763-764. https://doi.org/10.1038/44517
  13. Kang, K. H., 2011, Characterisitics of activated carbon prepared from waste citurs peel and its adsorption for VOCs and sulfur-compound, Ph.D. Dissertation, Jeju National University, Korea.
  14. Khezami, L., Capart, R., 2005, Removal of chromium (VI) from aqueous solution by activated carbons: kinetic and equilibrium studies, J. Hazard. Mater., 123, 223-231. https://doi.org/10.1016/j.jhazmat.2005.04.012
  15. Kim, Y. J., 2003, Simultaneous removal of hydrogen sulfide and ammonia by impregnated activated carbon, MS Thesis, Inje Univ., Korea.
  16. Koduru, J. R., Lingamdinne, L. P., Singh, J., Choo, K. H., 2016, Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite, Process Saf. Environ. Prot., 103, 87-96. https://doi.org/10.1016/j.psep.2016.06.038
  17. Kuramitz, H., Nakata, Y., Kawasaki, M., Tanaka, S., 2001, Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 45, 37-43. https://doi.org/10.1016/S0045-6535(01)00032-7
  18. Lagergren, S., 1898, About the Theory of So-Called Adsorption of Soluble Substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24, 1-39.
  19. Langmuir, I., 1918, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  20. Lee, M. G., Kam, S. K., Suh, K. H., 2012, Adsorption of non-degradable eosin Y by activated carbon, J. Environ. Sci., 21, 623-631.
  21. Lee, M. G., Kim, M. C., Kam, S. K., 2015, Characteristics of surface modified activated carbons prepared using $P_2O_5$ and their adsorptivity of bisphenol A, J. Environ. Sci. Int., 24, 1463-1471. https://doi.org/10.5322/JESI.2015.24.11.1463
  22. Lian, F., Song, Z., Liu, Z., Zhu, I., Xing, B., 2013, Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by $Cu^{2+}$ and pH, Environ. Pollut., 178, 264-270. https://doi.org/10.1016/j.envpol.2013.03.014
  23. Liu, G., Ma, J., Li, X., Qin, Q., 2009, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater., 164, 1275-1280. https://doi.org/10.1016/j.jhazmat.2008.09.038
  24. Lopez-Ramon, V., Moreno-Castilla, C., Rivera-Utrilla, J., Radovic, I. R., 2002, Ionic strength effects in aqueous phase adsorption of metal ions on activated carbon, Carbon., 41, 2009-2025.
  25. Munoz-de-Toro, M., Markey, C. M., Wadia, P. R., Luque, E. H., Rubin, B. S., Sonnenschein, C., Soto, A. M., 2005, Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice, Endocrinology, 146, 4138-4147. https://doi.org/10.1210/en.2005-0340
  26. Newcombe, G., Drikas, M., 1997, Adsorption of NOM onto activated carbon electrostatic and non-electrostatic effects, Carbon, 35, 1239-1250. https://doi.org/10.1016/S0008-6223(97)00078-X
  27. Pachamuthu, M. P., Karthikeyan, S., Maheswari, R., Lee, A. F., Ramanathan, A., 2017, Fenton-like degradation of bisphenol A catalyzed by mesoporous Cu/TUD-1, Appl. Surf. Sci., 393, 67-71. https://doi.org/10.1016/j.apsusc.2016.09.162
  28. Rezg, R., El-Fazaa, S., Gharbi, N., Mornagui, B., 2014, Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives, Environ. Int., 64, 83-90. https://doi.org/10.1016/j.envint.2013.12.007
  29. Rochester, J. R., 2013, Bisphenol A and human health: a review of the literature, Reprod. Toxicol., 42, 132-155. https://doi.org/10.1016/j.reprotox.2013.08.008
  30. Rosenfeld, E. J., Linden, K. G., 2004, Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes, Environ. Sci. Technol., 38, 5476-5483. https://doi.org/10.1021/es035413p
  31. Ruthven, D. M., 1984, Principles of adsorption and adsorption processes, Wiley, New York, 433.
  32. Suzuki, T., Nakagawa, Y., Takano, I., Yaguchi, K., Yasuda, K., 2004, Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity, Environ. Sci. Technol., 38, 2389-2396. https://doi.org/10.1021/es030576z
  33. Tsai, W. T., Lai, C. W., Su, T. Y., 2006, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater. B., 134(1-3), 169-175. https://doi.org/10.1016/j.jhazmat.2005.10.055
  34. Vandenberg, L. N., Maffini, M. V., Sonnenschein, C., Rubin, B. S., Soto, A. M., 2009, Bisphenol A and the great divide: a review of controversies in the field of endocrine disruption, Endocr. Rev., 30, 75-95. https://doi.org/10.1210/er.2008-0021
  35. Wetherrill, Y. B., Akingbemi, B. T., Kanno, J., McLachlan, J. A., Nadal, A., Sonnenschein, C., Watson, C. S., Zoeller, R. T., Belcher, S. M., 2007, In vitro molecular mechansisms of bisphenol A action, Reprod. Toxicol., 24, 178-198. https://doi.org/10.1016/j.reprotox.2007.05.010
  36. Yamanaka, H., Moriyoshi, K., Ohmoto, T., Ohe, T., Sakai, K., 2008, Efficient microbial degradation of bisphenol A in the presence of activated carbon, J. Biosci. Bioeng., 105, 157-160. https://doi.org/10.1263/jbb.105.157
  37. Yang, R. T., 1987, Gas seperation by adsorption process, Butterworth, Boston, 352.
  38. Zhu, H., Li, W., 2013, Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit, Front. Environ. Sci. Eng., 7, 294-300. https://doi.org/10.1007/s11783-013-0486-3