DOI QR코드

DOI QR Code

Evaluation of Exchange Capacities of Ca2+ and Mg2+ ions by Na-A Zeolite Synthesized from Coal Fly Ash

석탄비산재로 합성한 Na-A 제올라이트의 Ca2+와 Mg2+ 이온교환 성능평가

  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2018.06.26
  • Accepted : 2018.08.16
  • Published : 2018.11.30

Abstract

In this study, zeolite (Z-C1) was synthesized using a fusion/hydrothermal method from coal fly ash. The morphological structures of Z-C1 were confirmed to be highly crystalline with a cubic crystal structure. Exchange capacities of $Ca^{2+}$ and $Mg^{2+}$ ions in a single and a mixed solution reached equilibrium within 120 min. The exchange kinetics of these ions were well predicted by the pseudo-second-order rate equation. The exchange isotherms of the $Ca^{2+}$ and $Mg^{2+}$ ions matched the Langmuir isotherm better than the Freundlich isotherm. The maximum cation exchange capacities ($q_m$) obtained by the Langmuir isotherm model were 2.11 mmol/g (84.52 mg/L) and 1.13 mmol/g (27.39 mg/L) for the $Ca^{2+}$ and $Mg^{2+}$ ions, respectively.

Keywords

References

  1. Ahan, B. G., Oh, J., 2003a, Concentrated calcium ion removal using natural zeolites: kinetics and isotherm, J. Kor. Soc. Wat. Waste., 17, 113-120.
  2. Ahan, B. G., Oh, J., 2003b, Concentrated calcium ion removal using natural zeolites: effects of coexisting cations and regeneration, J. Kor. Soc. Wat. Waste., 17, 435-443.
  3. Apiratikul, R., Pavasant, P., 2008, Sorption of $Cu^{2+},\, Cd^{2+}, \,and \,Pb^{2+}$ using modified zeolite from coal fly ash, Chem. Eng. J., 144, 245-258. https://doi.org/10.1016/j.cej.2008.01.038
  4. Coker, E. N., Rees, L.V.C., 2005, Kinetics of ion exchange in quasi-crystalline aluminosilicate zeolite precursors, Microporous Mesoporous Mater., 84, 171-178. https://doi.org/10.1016/j.micromeso.2005.05.028
  5. Costa, E., de Lucas, A. M., Uguina, A., Ruiz, J. C., 1988, Synthesis of 4A zeolite from calcined kaolins for use in detergents, Ind. Eng. Chem. Res., 27, 1291-1296. https://doi.org/10.1021/ie00079a033
  6. Erten-Kaya, Y., Cakicioglu-Ozkan, F., 2012, Effect of ultrasound on the kinetics of cation exchange in NaX zeolite, Ultrasonics Sonochemistry, 19, 701-706. https://doi.org/10.1016/j.ultsonch.2011.10.010
  7. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
  8. Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827. https://doi.org/10.1002/cjce.5450760419
  9. Hollman, G. G., Steenbruggen, G., Janssen-Jurkovicova, M., 1999, A Two-step process for the synthesis of zeolites from coal fly ash, Fuel, 78, 1225-1230. https://doi.org/10.1016/S0016-2361(99)00030-7
  10. Hui, K. S., Chao, C. Y. H., Kot, S. C., 2005, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127, 89-101. https://doi.org/10.1016/j.jhazmat.2005.06.027
  11. Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  12. Lee, C. H. Park, J. W., 2011, Synthesis of zeolite using discharged fly ash in an industrial complex in Ulsan, J. Korean Soc. Environ. Eng., 33, 301-316. https://doi.org/10.4491/KSEE.2011.33.5.301
  13. Le VanMao, R., Vu, N.T., Xiao, S., Ramsaran, A., 1994, Modified zeolites for the removal of calcium and magnesium from hard water, J. Mater. Chem. 4, 1143 -1147. https://doi.org/10.1039/jm9940401143
  14. Molina, A., Poole, C., 2004, A Comparative study using two methods to produce zeolites from fly ash, Mine. Eng., 17, 167-173. https://doi.org/10.1016/j.mineng.2003.10.025
  15. Qin, C., Wang, R., Ma, W., 2010a, Adsorption kinetic studies of calcium ions onto Ca-Selective zeolite, Desalination, 259, 156-160. https://doi.org/10.1016/j.desal.2010.04.015
  16. Qin, C., Wang, R., Ma, W., 2010b, Characteristics of calcium adsorption by Ca-Selectivity zeolite in fixed-pH and in a range of pH, Chem. Eng. J., 156, 540-545 https://doi.org/10.1016/j.cej.2009.04.006
  17. Querol, X., Moreno, N., Umana, J. C., Alastuey, A., Hernandez, E., Lopez-Soler, A., Plana, F., 2002, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geol., 50, 413-423. https://doi.org/10.1016/S0166-5162(02)00124-6
  18. Shin, J. Y., Han, S. J., Wee, J. H., 2014, Leaching property of coal fly ash using water as the solvent and its carbonation performance, J. Korean Soc. Environ. Eng., 36, 198-205. https://doi.org/10.4491/KSEE.2014.36.3.198
  19. Tanaka, H., Fujii, A., 2009, Effect of strring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolies by two-step process, Adv. Powd. Tech., 20, 473-379.
  20. Thomas, E. C., William, A. C., Anthony, C. S., Brandon, H.W., 1982, Zeolite A hydrolysis and degradation, Environ. Sci. Tech., 16, 344-350. https://doi.org/10.1021/es00100a008
  21. Xue, Z., Li, Z., Ma, J., Bai, X., Kang, Y., Hao, W., Li, R., 2014, Effective removal of $Mg^{2+}\, and \,Ca^{2+}$ ions by mesoporous LTA zeolite, Desalination, 341, 10-18. https://doi.org/10.1016/j.desal.2014.02.025
  22. Yao, Y. Y., Kummer, J. T., 1967, Ion exchange properties of and rates of ionic diffusion in beta-alumina, J. Inorg. Nucl. Chem., 209, 2453-2475.
  23. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., Xi, Y. Q., 2015, A Comprehensive review on the applications of coal fly ash, Earth Sci. Rev., 141, 105-121. https://doi.org/10.1016/j.earscirev.2014.11.016
  24. Wibowo, E., Rokhmat, M., Khairurrijal, S., Abdullah, M., 2017, Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics, Desalination, 409, 146-156. https://doi.org/10.1016/j.desal.2017.01.026