Fig. 1. Class labeling of NeuroSky EEG data by referring to the expert labels
Fig. 2. Performance comparison of the tested learning algorithms
Fig. 3. Contribution of features in classification
Fig. 4. Performance comparison of the different labeling approaches
Fig. 5. Performance in the different window size
Fig. 6. Performance comparison between Embletta and NeuroSky (6 states, 5s window size)
Fig. 7. Performance comparison between Embletta and NeuroSky (2 states, 30s window size)
Table 1. The proposed features for classification
References
- Yonhapnews. (2017. 7. 12). 'Stress republic' ... "540,000 people are insomnia". www.yonhapnews.co.kr/bulletin/2017/07/11/0200000000AKR20170711142900017.HTML
- Embla Systems, Inc. (2010). EmblettaX100.carestreammedical.com/wp-content/uploads/Carestream-Embla-Embletta-X100.pdf
- NeuroSky (2018). NeuroSky Mindwave. www.neurosky.com
- Welch. P. (1967). The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, AU-15 (2):70-73
- Wolpert. E. (1969). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Archives of General Psychiatry, 20(2), 246.
- R. Agarwal & G. Jean. (2001). Computer-assisted sleep staging. IEEE Transactions on Biomedical Engineering, 48(12), 1412-1423. https://doi.org/10.1109/10.966600
- Weka 3 (2018). Data mining software in Java. www.cs.waikato.ac.nz/ml/weka/
- E. Alpaydin. (2010). Introduction to Machine Learning, 2nd ed. Cambridge, MA, USA: The MIT Press.
- A. Rechtschaffen & A. Kales. (1968). A manual of standardized terminology, techniques and scoring system of sleep stages in human subjects. Los Angeles: Brain Information Service/Brain Research Institute, University of California.
- J. H. Jang, S. Y. Cho & B. Y. Kim. (2002). Automatic sleep stage scoring using single-channel EEG signal. Korean Journal of Brain Science and Technology, 2(2), 129-135.
- J. E. Lee & S. K. Yoo. (2013). The design of feature selecting algorithm for sleep stage analysis. Journal of The Institute of Electronics Engineers of Korea, 50(10).
- H. S. Han & U. P. Chong. (2012). Electroencephalogrambased driver drowsiness detection system using AR coefficients and SVM. Journal of Korean Institute of Intelligence Systems, 22(6).
- J. E. Jeon & S. W. Choi. (2017). Insomnia treatment using neurofeedback: EEG beta decrease protocol. Korean Journal of Clinical Psychology, 36(3), 351-368. https://doi.org/10.15842/kjcp.2017.36.3.006
- Y. H. Joo, J. K. Kim & I. H. Ra. (2008). Intelligent drowsiness drive warning system. Journal of Korean Institute of Intelligent Systems, 18(2), 223-229. https://doi.org/10.5391/JKIIS.2008.18.2.223
- H. Kataoka, H. Yoshida, A. Saijo, M. Yasuda & M. Osumi. (1998). Development of a skin temperature measuring system for non-contact stress evaluation. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2, 940-943.
- A. Bunde, S. Havlin, J. Kantelhardt, T. Penzel, J. Peter & K. Voigt. (2000). Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett, 8(85), 3736-3739.
- Y. B. Lee & M. H. Lee. (2007). Automobile system for drowsiness accident detection using EDA signal analysis. The Transactions of KIEE, 56(2), 227-450.