DOI QR코드

DOI QR Code

슬롯결합 커패시터 공진기를 이용한 Nacl 수용액 농도 검출

Nacl Aqueous Solution Concentration Detection Using Slot-Coupled Capacitor Resonator

  • 윤기호 (성결대학교 정보통신공학부)
  • Yun, Gi-Ho (Division of Information & Communication Engineering, Sungkyul University)
  • 투고 : 2018.08.20
  • 심사 : 2018.11.20
  • 발행 : 2018.11.28

초록

본 연구는 준 마이크로파 대역에서 슬롯(slot) 결합 커패시터 공진기를 이용하여 Nacl 수용액의 농도변화를 감지할 수 있는 고감도 센서를 제안하였다. 센서에 적용되는 공진기는 마이크로스트립 선로의 접지 면을 활용하여 유도성 슬롯(inductive slot)과 연결된 평행판 커패시터로 구성된다. 농도변화에 따른 유전특성 측정데이터를 기반으로, 농도변화가 확연히 드러나는 UHF 대역에서 공진주파수가 정해졌으며, 평행판 커패시터 내에 Nacl 수용액이 삽입된다. 시뮬레이션을 토대로 제안된 공진기를 설계하여 제작하였다. 농도 변화를 0 mg/dl에서 400 mg/dl까지 100 mg/dl 단계로 실험하였고, 전송 산란계수($S_{21}$)가 측정되었다. 실험결과 각 단계별 최소 1.8 dB($S_{21}$)의 변화를 얻음으로써 Nacl 수용액에서 농도검출 센서에 적용가능함을 입증하였다.

In this paper, we proposed a high sensitivity sensor that can detect the concentration change of Nacl aqueous solutions by using a slot coupling capacitor resonator in sub-microwave band. The resonator applied to the sensor consists of a parallel plate capacitor connected to an inductive slot utilizing the ground plane of the microstrip line. Based on the measurement data of the dielectric characteristics according to the concentration change, the resonance frequency was determined in the UHF band where the concentration change is evident and the Nacl aqueous solution is inserted into the capacitor. Based on the simulation, the proposed resonator was designed and fabricated. The concentration level was varied from 0 to 400 mg/dl as 100 mg/dl step, and the transmission scattering coefficient ($S_{21}$) was successfully measured. Experimental results show that it is applicable to the concentration detection sensor in Nacl aqueous solution by obtaining minimum 1.8 dB($S_{21}$) at each step.

키워드

OHHGBW_2018_v9n11_29_f0001.png 이미지

Fig. 1. Measured loss tangent of Nacl aqueous solutions.

OHHGBW_2018_v9n11_29_f0002.png 이미지

Fig. 2. Configuration of the proposed sensor and its detailed side view

OHHGBW_2018_v9n11_29_f0003.png 이미지

Fig. 3. Simplified 2-port equivalent circuit of the resonator

OHHGBW_2018_v9n11_29_f0004.png 이미지

Fig. 4. Simulated results of Transmission coefficients(S21) over Nacl solution concentrations

OHHGBW_2018_v9n11_29_f0005.png 이미지

Fig. 5. Simulated result for electric field distribution in the Nacl aqueous solution.

OHHGBW_2018_v9n11_29_f0006.png 이미지

Fig. 6. Photo of the fabricated prototype

OHHGBW_2018_v9n11_29_f0007.png 이미지

Fig. 7. Measured results of Transmission coefficient (S21) for the prototype

Table 1. Dielectric properties of Nacl aqueous solutions measured around 700MHz.

OHHGBW_2018_v9n11_29_t0001.png 이미지

Table 2. Transmission coefficient (S21) over Nacl solution concentrations on PCB boards

OHHGBW_2018_v9n11_29_t0002.png 이미지

Table 3. Dimensions of the designed resonator

OHHGBW_2018_v9n11_29_t0003.png 이미지

참고문헌

  1. S. H. Lee & D. W. Lee. (2016). Actual Cases for Smart Fusion Industry based on Internet of Thing, Journal of the KCS, 7(2), 1-6.
  2. S. H. Lee & D. W. Lee. (2015). On Issue and Outlook of wearable Computer based on Technology in Convergence, Journal of the KCS, 6(3), 73-78.
  3. G. H. Yun. (2017). Non-Invasive Blood Glucose Sensor By Sub-Microwave Oscillator, Journal of the KCS, 8(9), 9-16.
  4. http://www.elec4.co.kr/article/articleView.asp?idx=7276
  5. https://www.bioin.or.kr/InnoDS/data/upload/industry/1436168172020.pdf
  6. Y. S. Park. (2008), Comparison of dietary behaviors related to sodium intake by gender and age. Korean Journal of Community Nutrition, 13(1), 1-12.
  7. G. Yang I. et al. (2010). Development of a Salt Taste Sensor for Improvement on Meal Habit. J. of Bio-Systems Eng. 35(5), 310-315.
  8. J. J. Yoho. (1998). Design and Calibration of a RF Capacitance Probe for Non-Destructive Evaluation of Civil Structures. Virginia Polytechnic Institute and State University, MS thesis.
  9. S. H. Kim, et al. (2007). Concentration of Sodium Chloride Solutions Sensing by Using a Near-Field Microwave Microprobe. Journal of the Korean Society for Nondestructive Testing, 27(1).
  10. L. J. Li. (2010). Simultaneous Detection of Organic and In organic Substances In Mixed Aqueous Solution Using a Microwave Dielectric Sensor. PIER C, 14, 1630-1671.
  11. G. Gennarelli, et al. (2013). A Microwave Resonant Sensor for Concentration Measurements of Liquid Solutions. IEEE Sensors Journal, 13(5), 1856-1864. https://doi.org/10.3390/s130201856
  12. C. F. Liu, et al. (2018). Improved Hairpin Resonator for Micro-fluidic Sensing. Sensors and Materials, 30(5), 979-990.
  13. A. Soffiatti, et al. (2018). Microwave Metamaterial Based Sensor for Dielectric Characterization of Liquids. Sensors, 18(5), 1513. https://doi.org/10.3390/s18051513
  14. C. Jang, et al. (2018). Non-Invasive Discrimination between Glucose and Sodium Chloride Solution using Complementary Split Ring Resonator. JKIEES, 29(4), 247-255.
  15. C. J. Wang & C. S. Lin. (2008). Compact DGS resonator with improvement of Q-factor. Electronic Letters, 44(15).