DOI QR코드

DOI QR Code

FTO 필름 식각액에 관한 융합연구

Convergence Study on FTO Film Etchant

  • 한두희 (청운대학교 중소기업기술융합연구소) ;
  • 양의동 (청운대학교 글로벌경영학과)
  • Han, Doo-Hee (Industrial Technology Convergence Research Institute, Chungwoon University) ;
  • Yang, Ui-Dong (Chungwoon University Dept. of Global Management)
  • 투고 : 2018.10.04
  • 심사 : 2018.12.20
  • 발행 : 2018.12.31

초록

완전 수입에 의존하는 ITO를 대체할 수 있는 FTO 필름에 회로를 형성시킬 수 있는 식각액을 제조하였다. 이 식각액은 불화물 1 ~ 30량%, 산 1 ~ 20량%, 계면활성제 0.5 ~ 5 중량%, 용매제 5 ~ 20 량%, 부식억제제 0.5 ~ 10중량%, 나머지는 물로 이루어진다. 이 식각액은 드라이필름을 이용한 식각공정이 가능하여 비용을 절감할 수 있으며, 식각액의 거품발생 및 찌꺼기가 발생하지 않는 특징이 있다. 식각액의 특성은 100nm 두께의 FTO를 2분 만에 식각할 수 있었고 이때 $50^{\circ}C$의 식각액 온도를 유지하였다. 2분 식각액에 넣었을 때 -0.00364%의 언더컷을 얻었다. Cd, Pb, Hg, Cr 성분 등의 환경유해물질은 측정되지 않았다. 희토류가 나지 않는 우리나라에서 FTO를 활용하면 국산화 및 수입대체효과를 이룩할 수 있다.

An etchant capable of forming a circuit in an FTO film that can replace ITO, which depends on full imports, was prepared. The etching solution is composed of 1 to 30% by weight of fluoride, 1 to 20% by weight of acid, 0.5 to 5% by weight of surfactant, 5 to 20% by weight of solvent, 0.5 to 10% by weight of corrosion inhibitor and the balance of water. This etchant can be etched using a dry film, thereby reducing the cost, and is free from bubbles and residue of the etchant. The characteristics of the etchant were etched in a time of 2 minute with a 100 nm thick FTO, and the etchant temperature was maintained at $50^{\circ}C$. An undercut of -0.00364% was obtained when put into a 2 minute etching solution. No harmful substances such as Cd, Pb, Hg and Cr components were measured. The use of FTO in Korea where rare earths do not exist can achieve localization and import substitution effect.

키워드

JKOHBZ_2018_v8n6_43_f0001.png 이미지

Fig. 1. Etching Speed according to fluorine compounds

JKOHBZ_2018_v8n6_43_f0002.png 이미지

Fig. 2. Etching Speed according to Acid Type

JKOHBZ_2018_v8n6_43_f0003.png 이미지

Fig. 3. Etching Speed according to fluorine compound content

JKOHBZ_2018_v8n6_43_f0004.png 이미지

Fig. 4. Etching Speed according to Acid Content

JKOHBZ_2018_v8n6_43_f0005.png 이미지

Fig. 5. Surface tension test according to surfactant content

JKOHBZ_2018_v8n6_43_f0006.png 이미지

Fig. 6. Confirmation of pattern formation(L: before etching, R: after etching)

JKOHBZ_2018_v8n6_43_f0007.png 이미지

Fig. 7. Testing flow chart for RoHS: Cd/Pb/Hg/Cr6+ testing

JKOHBZ_2018_v8n6_43_f0008.png 이미지

Fig. 8. Wet etching pretreatment process

JKOHBZ_2018_v8n6_43_f0009.png 이미지

Fig. 9. FIB measurement result.(1st angle)

JKOHBZ_2018_v8n6_43_f0010.png 이미지

Fig. 10. FIB measurement result.(2nd angle)

JKOHBZ_2018_v8n6_43_f0011.png 이미지

Fig. 11. Before etching

JKOHBZ_2018_v8n6_43_f0012.png 이미지

Fig. 12. Etching After 90seconds

JKOHBZ_2018_v8n6_43_f0013.png 이미지

Fig. 13. Etching After 120seconds

JKOHBZ_2018_v8n6_43_f0014.png 이미지

Fig. 14. Sn content for dipping time

JKOHBZ_2018_v8n6_43_f0015.png 이미지

Fig. 15. Ingradient analysis(SEM/EDS)

Table 1. Surface tension according to surfactant content

JKOHBZ_2018_v8n6_43_t0001.png 이미지

Table 2. Etchig Condition Result

JKOHBZ_2018_v8n6_43_t0002.png 이미지

Table 3. Hazardous substance inspection

JKOHBZ_2018_v8n6_43_t0003.png 이미지

Table 4. Undercut result

JKOHBZ_2018_v8n6_43_t0004.png 이미지

참고문헌

  1. C. Hudaya1, J. H. Park & J. K. Lee. (2012). Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films. Nanoscale Research Letters, 7, 17 http://www.nanoscalereslett.com/content/7/1/17 https://doi.org/10.1186/1556-276X-7-17
  2. Z. Y. Banyamin, P. J. Kelly, G. West & J. Boardman. (2014). Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings, 4, 732-746. DOI : 10.3390/coatings4040732
  3. M. L. M. Napi1, M. F. Maarof1, C. F. Soon1, N. Nayan1, F. I. M, Fazli1, N. K. A. Hamed1, S. M. Mokhtar1, N. K. Seng1, M. K. Ahmad1, A. B. Suriani2 and A. Mohamed. (2016). Fabrication of Fluorine doped tin oxide(FTO) thin filmsusing spray pyrolysis deposition method for transparent conducting oxide, ARPN Journal of Engineering and Applied Sciences, 11, 14, 8800-8804
  4. H. Kim & B. L. Yang. (2015). Seed Layers in $TiO_2$ Nanorods on FT. Journal of the Korean Ceramic Society 2015, 52(1), 9-12, DOI : 10.4191/kcers.2015.52.1.9
  5. S. H. Kim, Y. J. Kim, I. J. No, J. W. Cho, N. H. Lee, J. S. Kim & P. K. Shin. (2009). Characterization of thin film Si solar cell with FTO transparent electrode. Proceedings of 2009 Summer Conference of the Korean Institute of Electrical Engineers, 1351-1352
  6. D. I. Kim, S. H. Nam, K. H. Hwang, Y. M. Lee & J. H. Boo. (2016). Glass Texturing Affects Optical Properties of Perovskite Solar Cells: Comparison Study between Mesoscopic and Planar Structure. Chemical engineering transactions, 52, 367-372, DOI : 10.3303/CET1652062
  7. A. A. Haleem & M. Ichimura. (2014). Electrochemical deposition of aluminum oxide thin films from aqueous baths. Materials letters, 130, 26-28. https://doi.org/10.1016/j.matlet.2014.05.061
  8. Y. M. Lee, S. H. Nam & J. H. Boo. (2015). Influences of Glass Texturing on Efficiency of Dye-Sensitized Solar Cells. Applied Science and Convergence Technology, 24(6), 289-292. DOI : 10.5757/ASCT.2015.24.6.289
  9. S. H. Brewer. (2002). Stefan Franzen, Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity. Journal of Alloys and Compounds, 338, 73-79. https://doi.org/10.1016/S0925-8388(02)00217-7
  10. F. I. Chowdhury, T. Blaine & A. B. Gougam. (2013). Optical transmission enhancement of Fluorine doped Tin Oxide (FTO) on glass for thin film photovoltaic application. Energy Procedia, 42, 660- 669. https://doi.org/10.1016/j.egypro.2013.11.068
  11. A. E. Hassanien1, H. M. Hashem1, G. Kamel, S. Soltan1, A. M. Moustafa, M. Hammam1 & A. A. Ramadan. (2016). Performance of Transparent Conducting Fluorine-doped Tin Oxide Films for Applications in Energy Efficient Devices. International Journal of Thin Films Science and Technology, 5(1), 55-65. DOI : 10.18576/ijtfst/050109
  12. W. Z. Samad, M. M. Salleh, A. Shafiee & M. A. Yarmo. (2011). Structural, Optical and Electrical Properties of Fluorine Doped Tin Oxide Thin Films Deposited Using Inkjet Printing Technique. Sains Malaysiana , 40(3), 251-257.
  13. V. Senthilkumar, P. Vickraman & R. Ravikumar. (2010). Synthesis of fluorine doped tin oxide nanoparticles by sol-gel technique and their characterizatio. J of Sol-Gel Science and Technology, 53(2), 316-321. DOI : 10.1007/s10971-009-2094-z
  14. C. C. Lin, M. C. Chiang & Y. W. Chen. (2009). Temperature dependence of Fluorine-doped tin oxide films produced by ultrasonic spray pyrolysis. Thin Solid Films, 518, 1241-1244. https://doi.org/10.1016/j.tsf.2009.05.064
  15. J. T. Kim, C. Kim, S. J. Jung & Y. S. Hon. (2009). Study of efficiency in dye-sensitized solar cells on FTO substrate and $Ti0_2$ layer thickness., Applied Chemistry, 13(l), 121-124.
  16. K. C. Kim. (2018). A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures. Journal of Convergence for Information Technology, 8(5), 95-100. https://doi.org/10.22156/CS4SMB.2018.8.5.095