
논문 18-11-01-26
한국정보전자통신기술학회논문지(jkiiect)’18-02, Vol.11 No.1

http://dx.doi.org/10.17661/jkiiect.2018.11.1.26

1. Introduction

The Internet is constantly evolving and

presents a lot of challenges for web application

developers[1]. Excessive traffic requires services

to better handle multiple sessions at the same

time[2]. "Slashdot Effect" also shows how many

times the traffic can change[3]. The web enables

real-time service to be provided in corporate

security system operation[4], and to provide

real-time service to enterprise marketing

strategy[5]. So, web applications must be able to

process concurrent requests efficiently and in

real time. Lauer and Needham argue that

processing can be modeled by a threading or

messaging system, claiming extensive duality in

computing[6]. A web application that processes

concurrent requests implements threading by

allocating each incoming request to a separate

execution thread. Conversely, message passing

or event-based systems use a single thread to

process events, such as incoming requests, in

the queue. Each approach has advantages and

disadvantages depending on implementation.

Node.js is one of the more recent frameworks

that implement event models through the entire

stack. Node.js (or Node) is a single-threaded

server-side JavaScript environment implemented

in C and C ++[7]. The node architecture is easy

to use as a expressive and functional language

for popular server-side programming among

developers[7]. Nodes use JavaScript V8 engine

developed by Google to quickly and robustly

implement JavaScript[8,9] to get the best

performance from the nodes. Most web

applications want users to get real-time

responses. For example, in the case of a movie

theater selection, while selecting a screening

place and making a payment, if someone else

makes a reservation, you should know the fact

* Division of Computer-mechatronics Engineering, Shamyook University
Received February 05, 2018 Revised February 09, 2018 Accepted February 13, 2018

Automatic Alignment System for Group Schedule of Event-based

Real-time Response Web Processing using Node.js

Hee-Wan Kim*

Abstract A web application running on the Internet is causing many difficulties for a program

developer, and it requires to process multiple sessions at the same time due to the occurrence of

excessive traffic. Web applications should be able to process concurrent requests efficiently and in

real time. Node.js is a single-threaded server-side JavaScript environment implemented in C and C ++

as one of the latest frameworks to implement event models across the entire stack. Nodes implement

JavaScript quickly and robust to achieve the best performance using a JavaScript V8 engine developed

by Google. In this paper, it will be explained the operation principle of Node.js, which is a

lightweight real-time web server that can be implemented in JavaScript for real-time responsive web

applications. In addition, this application was practically implemented through automatic alignment

system for group scheduling to demonstrate event-based real-time response web processing.

Key Words : HTML5, event-based, Node.js, real-time response, web application

Automatic Alignment System for Group Schedule of Event-based Real-time Response Web Processing using Node.js 27

and cancel the payment. At this time, the

reservation of the seat should be reflected on

the screen in real time.

In this paper, it is explained the operation

principle of Node.js, which is a lightweight

real-time web server that can be implemented

in JavaScript for real-time responsive web

applications. The prototype is based on HTML5

canvas and textarea. It will be discussed web

services. In addition, this application is

practically implemented through automatic

alignment system for group scheduling to

demonstrate event based real - time response

web processing.

2. Operation of Realtime Web

Application

2.1 Event-Driven and Non-Blocking I/O

The very first web pages were hypertext

based[10], where links in one page will load a

different related page. Traditional web UIs follow

this paradigm but the content is dynamically

generated based on the parameters attached to a

given link. Key characteristics of such UIs are

multi-page interface, full-page load for each user

interaction, and server-side view generation. Fig. 1

shows a typical user interaction with a traditional

web UI, highlighting these characteristics (the

technologies referenced in the figure are those

used within Experiment Dashboard applications in

particular)[11].

Fig. 1. Typical user interaction with a traditional web UI

Since its inception in 1995, JavaScript has

solved the problems of the front-end and

back-end domains.

Fig. 2. Node.js in the javascript spectrum

In Fig. 2, JavaScript in the web browser on

the right hand side is often used to wait for user

input. The left-hand side of the back-end

database uses JavaScript extensively, from

editing records to performing ad-hoc queries

and mapreduce tasks. Much of the work of

middleware is tied to I/O like client-side

scripting or databases. These server side

programs often have to wait for the results of

the database or for feedback or connection

requests from external web servers to come in.

Node.js solves this problem.

Node.js connects the JavaScript to the event

loop so that it can be processed quickly when

an event occurs. The event loop shown in Fig.

2 runs endlessly and when an event occurs, the

node activates a callback function that is

listening to the event. Other systems try to

achieve parallelism by executing a lot of code at

the same time and usually create many threads

for this purpose. However, Node is a

single-threaded environment and in any case it

executes only one line of code at a time. Node

can do this because most I / O operations are

handled using non-blocking techniques. Rather

than wait one line at a time until the operation

28 한국정보전자통신기술학회논문지 제11권 제1호

finishes, you can create a callback function that

will be called when the operation succeeds or

fails.

Fig. 3. Event loop of Node.js

2.2 Module

The concept of a module is a kind of library

concept that allows you to load modules from

other files. You can think of the concept of a

#included library in another class that imports

java. The module is implemented in file units,

which are exposed to the outside using export.

Think of it as a public method of a java class.

If a function in the file does not exports, it can

not be called from the outside.

 If you have a hello function in your Hello.js

file and want to load it in another file, you can

define it in the Hello.js file as follows

var hello = function(){...}

exports = hello;

 Use this hello function to invoke the

module with require (for example, from

app.js) and invoke it.

var hello = require('./Hello');

 hello();

require specifies the filename of the module

you want to use, except for the ".js" extension.

Anything that can be exports from a module

becomes a function and a JavaScript object. In

the above example, the module is used by using

the function type. If you want to export the

object type,

 exports.hello = function(){...}

To export and use, can use as follows.

 var h = require('./Hello');

 h.hello();

2.3 Prototype System

In this section, it will be seen how the service

of the Node.js server is done through the

prototype system. The Node.js module used in

the server application of the prototype system is

as follows.

The page in Fig. 4 has a canvas and a

textarea. The canvas can be dragged with a

mouse to draw lines, and the canvas screen can

be broadcast to any page connected to the

server. This is because the event corresponding

to the drag is registered, and the coordinates of

the dragged mouse are passed as arguments to

the callback function, so that the callback

function draws the same line at the coordinates

received. In addition, the input text can be

broadcasted by registering an event for text

input and executing a callback function on it.

Therefore, the user can receive real-time

responses to the contents displayed on the

canvas in real time and the contents inputted in

the textarea.

Automatic Alignment System for Group Schedule of Event-based Real-time Response Web Processing using Node.js 29

Fig. 4. Canvas / Textarea Pages

In Node.js, you register (define) the event

with the on method and emit a specific event

with the emit method. In the canvas drag event

of the prototype system shown in Fig. 5, the

server is registered in the form of socket.on

('drag', callback), and the client emits an event

by emit ('drag').

Fig. 5. Event processing flow of the prototype system

The server executes a callback function for

the event that occurs, and what it does is

broadcast the data received to the connected

clients. The broadcast is also triggered by the

event. When the broadcast event is emited, the

canvas can be updated by executing the

callback method for the update event that is

turned on in the client-side script.

Fig. 6. Sequential processing with callback

3. Automatic Alignment System for

Group Schedule

3.1 Overview of automatic alignment

 system for group schedule

A group has to schedule a large number of

people to schedule a meeting, but during such

a time, the group schedule that has been laid

out due to personal circumstances that have

been forgotten is often canceled. For example,

in Google Calendar, only the function of

checking personal schedule and friend's

schedule is implementing. In order to meet all

of these requirements, this service allows users

to customize and apply the group schedule by

not only searching for personal schedule but

also searching for and applying the user's ID so

that the group schedule can be canceled as

much as possible.

3.2 Requirement of group schedule

 automatic alignment

3.2.1 Functional requirements

The functional requirements for the

automatic alignment system from the user's

30 한국정보전자통신기술학회논문지 제11권 제1호

point of view are as follows.

Table 1. Functional requirements

3.2.2 Non-functional requirements

The non-functional requirements of this

system are as follows.

Table 2. Non-functional requirements

3.3 Data Modeling

The DB structure of this website is shown in

Fig. 7.

Fig. 7. Data Modeling

The member table refers to the PK of the

question table, and the note able refers to the

PK of the member table and the group schedule

table. In order to prevent duplication of

repeated data in individual schedule and group

schedule table, time schedule table is created

separately and the schedule start time and end

time are managed according to schedule

number.

Automatic Alignment System for Group Schedule of Event-based Real-time Response Web Processing using Node.js 31

3.4 Flow chart of system

The flow of the automatic alignment system

for group scheduling is as shown in Fig. 8.

Non-members sign in after signing up. After

logging in, the member inputs the content of

his/her schedule, and the web site registers the

contents in the DB table through data

verification of the schedule contents. When

registering a group schedule, search for and add

members to schedule together, and send a

group calendar invitation message. The member

who receives the invitation message decides

whether to accept or reject the schedule, and

when the conditions are satisfied according to

the registration conditions of the group

schedule, the schedule is registered in the

members' schedule database. The registered

member's schedule is displayed in the calendar

of the main page in a different color according

to the category.

Fig. 8. System Flow

3.5 Initial Screen

When you run this web application, the

screen shown in Fig. 9 is displayed. Upon

connection, the corresponding calendar is

displayed along with the calendar corresponding

to the date and month. On the right side of the

main screen, there is a schedule registration

button.

Fig. 9. Initial Screen

This screen is output screen by searching the

personal schedule and the group schedule. This

application is implemented so that it can be

output separately by searching its schedule on

the search window at the upper part of the

main screen.

Fig. 10. Schedule Search Screen

4. Conclusion

The real-time response mechanism of the

canvas and the textarea prototype can be

applied to various services. We can simply

implement a real-time response web application

by registering the events in the script code of

the server and client and generating them. By

placing Node.js as a server, users can chat and

32 한국정보전자통신기술학회논문지 제11권 제1호

real-time interact with the browser by

implementing a canvas-based web game, and

can provide a satisfactory service to users

through various modules such as file I/O.

In this paper, it is introduced Node.js, a

lightweight web server that can be produced

using JavaScript, and examined the mechanism

of real-time response through a prototype

system. JavaScript can implement on the

server-side beyond the client-side by creating

lightweight web applications. The prototype was

based on HTML5 canvas and textarea. In

addition, this application was implemented

through automatic alignment system for group

scheduling to demonstrate event-based

real-time response web processing.

Future research will be able to easily and

user-friendly web service for most web

applications by systemizing framework for

lightweight event-based real-time response web

based on Node.js server.

REFERENCES

[1] Labovitz, C., Iekel-Johnson, S., McPherson,

D., Oberheide, J., and Jahanian, F.

“Internet Inter-Domain Traffic”, SIGCOMM

’10, 2010.

[2] L. A. Wald and S. Schwarz. “Seismological

Research Letters”, The 1999 Southern

California Seismic Network Bulletin, vol.

71, No.4, 2000.

[3] Matt Welsh, David Culler, and Eric Brewer,

”SEDA: An Architecture for

Well-Conditioned, Scalable Internet

Services”, ACM Symposium on Operating

Systems Principles, 2001.

[4] Y. W. Jeong, J. Y. Sohn, J. C. Chun, and K.

S. Choi, “Development of a RADIUS WLAN

Security System for Industrial Applications

Based on WEB”, The Journal of Korea

Institute of Information, Electronics, and

Communication Technology, pp.599-603,

Vol.9, No.6, December 2016.

[5] B. K. Lee, E. H. Jeong, and Y. N. Jung, “A

Design of SNS and Web Data Analysis System

for Company Marketing Strategy”, The Journal

of Korea Institute of Information, Electronics,

and Communication Technology, Vol.6, No.4,

pp.195-200, December 2016.

[6] Lauer, H.C., Needham, R.M., ”On the

Duality of Operating Systems Structures,”

in Proc. Second International Symposium

on Operating Systems, IR1A, Oct. 1978,

reprinted in Operating Systems Review, 13,

pp. 3-19, April 1979.

[7] Tilkov, S., Vinoski, S. “Node.js: Using

Javascript to Build High-Performance

Network Programs. Internet Computing”,

IEEE, STRIEGEL, GRAD OS F’11, PROJECT

DRAFT 6, 2010

[8] Paruj Ratanaworabhan, Benjamin Livshits,

and Benjamin Zorn, “JSMeter: Comparing

the behavior of JavaScript benchmarks

with real web applications”, In USENIX

Conference on Web Application

Development (WebApps), June 2010.

[9] Google Javascript V8,

http://code.google.com/p/v8/

[10] Berners-Lee T, Cailliau R, “1990

WorldWideWeb: Proposal for a HyperText

Project”

 (http://www.w3.org/Proposal.html retrieved

2012-06-22)

[11] J Andreeva, I Dzhunov, E Karavakis, L

Kokoszkiewicz, M Nowotka, P Saiz, D

Tuckett, “Designing and developing

portable large-scale JavaScript web

applications within the Experiment

Dashboard framework“, International

Conference on Computing in High Energy

and Nuclear Physics, pp.1-11, 2012

Automatic Alignment System for Group Schedule of Event-based Real-time Response Web Processing using Node.js 33

Hee-Wan Kim [종신회원]

•Aug. 1995 : Sungkyunkwan Univ,

Computer Eng. MS

•Feb. 2001 : Sungkyunkwan Univ,

Computer Eng. Ph.D

•May. 1996 : Professional

Engineer(IT)

•Mar. 1996 ∼ current : Shamyook

Univ., Dept. of Computer,

Professor

<Research Interests>

Database, Information Audit, Software Engineering

