DOI QR코드

DOI QR Code

Study on UAV Flight Patterns and Simulation Modelling for UTM

저고도 무인기 교통관리 체계에서 무인기 비행패턴 분류 및 시뮬레이션 모형 개발

  • Jung, Kyu-sur (School of Air Transport, Transportation and Logistics, Korea Aerospace University) ;
  • Kim, Se-Yeon (School of Air Transport, Transportation and Logistics, Korea Aerospace University) ;
  • Lee, Keum-Jin (School of Air Transport, Transportation and Logistics, Korea Aerospace University)
  • 정규서 (한국항공대학교 항공교통물류학과) ;
  • 김세연 (한국항공대학교 항공교통물류학과) ;
  • 이금진 (한국항공대학교 항공교통물류학과)
  • Received : 2017.12.27
  • Accepted : 2018.02.13
  • Published : 2018.02.28

Abstract

In this paper, we classified a flight pattern of unmanned aerial vehicle(UAV) which will be operating in UTM system and analyzed its flight pattern by purpose of use. Flight patterns of UAV are sorted into three patterns which are circling, monitoring and delivery. We considered four cases of industry areas using UAV which are agriculture, infrastructure monitoring, public safety & security(p.s.s) and delivery. It is necessary to build a simulation model as a verification tool for applying the flight pattern according to the use of UAV to the real UTM system. Therefore, we propose the simulation model of UAV with updating states over time. We applied simulation to UAV monitoring flight pattern, and confirmed that the flight was done by the given input data. The simulation model will be used in the future to verify that the UAV has various flight patterns and can operate safely and efficiently for the intended use.

본 논문에서는 저고도 무인기 교통관리 체계에서 운용될 무인기의 사용 용도별로 비행패턴을 분석하였고, 시뮬레이션 모형을 개발하였다. 무인기 비행패턴은 감시형, 선회형, 배송형 패턴으로 분류하였으며, 무인기 사용 용도별로는 농업, 시설 점검, 공공안전 및 보안, 물품 배송으로 총 네 가지 경우를 고려하였다. 또한 저고도 무인기 교통관리 체계에 적용할 공역 운용방식을 검증하기 위한 도구로써 시뮬레이션 모형을 개발하였다. 개발된 시뮬레이션 모형을 감시형 비행패턴에 적용해 보았으며, 그 결과 정해진 입력을 받아 주어진 비행패턴을 그리며 비행하는 것을 확인 및 검증하였다. 본 시뮬레이션 모형은 향후 무인기가 다양한 비행패턴을 그리며 해당 용도에 맞게 안전하고 효율적으로 운항할 수 있는지 검증하는데 사용될 예정이다.

Keywords

References

  1. P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robinson III, "Unmanned aircraft system traffic management (UTM) concept of operations," in 16th AIAA Aviation Technology, Integration, and Operation Conference, Washington D.C, 2016.
  2. Global UTM Associaton. UAS Traffic Management Architecture [Online]. Available: https://www.gutma.org/docs/Global_UTM_Architecture_V 1.pdf
  3. E. Sunil, J. Hoekstra, J. Ellerbroek, F. Bussink, D. Nieuwenhuisen, A. Vidosavljevic, and S. Kern, "Metropolis: Relating airspace structure and capacity for extreme traffic densities," in 11th USA/Europe Air Traffic Management Research and Development Seminar, Lisbon: Portugal, 2015.
  4. K. H. Low, L. Gan, and S. Mao, "A preliminary study in managing safe and efficient low-altitude unmanned aircraft system operations in a densely built-up urban environment," in International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications, Berlin: Germany, 2016.
  5. K. S. Jung, and K. J. Lee, "A method of implementing geo-fence to be operated under UTM(unmanned aircraft system traffic management) in lower altitude," in The Korean Navigation Institute 2017 Conference, Seoul: Korea, pp. 315-317, 2017.
  6. NTU(Nanyang technological university). NTU's Traffic Management of Unmanned Aircraft Systems(TM-UAS) Programme [Online]. Available: http://atmri.ntu.edu.sg/TMUAS/Pages/Infography.aspx
  7. SESAR. European Drone Outlook Study [Online]. Available: http://www.sesarju.eu/sites/default/files/documents/reports/ European_Drones_Outlook_Study_2016.pdf
  8. G.Zhu, and P. Wei, "Low-altitude UAS traffic coordination with dynamic geofencing," in 16th AIAA Aviation Technology, Integration, and Operation Conference, Washington D.C, 2016.
  9. YAMAHA. Precision agriculture with Yamaha rMax helicopter [Online]. Available: https://www.youtube.com/watch?v=ydfPzqaNkuA
  10. S. Y. KIM, and K. J. Lee, "Design of arrival aircraft simulation model with machine learning," in The Korean Navigation Institute 2017 Conference, Seoul: Korea, pp. 433-435, 2017.
  11. Wikipedia. Boeing 777 [Online]. Available: https://en.wikipedia.org/wiki/Boeing_777#Specifications
  12. UAVER. Swallow-P Aerial Mapping [Online]. Available: http://www.uaver.com/swallow-p-aerial-mapping.html
  13. A. Chakrabarty, and J. W. Langelaan, "Flight path for UAV atmospheric energy harvesting using heuristic search", in AIAA Guidance, Navigation, and Control Conference, Toronto: Ontario Canada, 2011.
  14. A. Nuic, User Manual for the Base of Aircraft Data (BADA) Revision 3.12, EUROCONTROL Experimental Centre, EET Technical/Scientific Report No.14/04/22-44, 2014.