DOI QR코드

DOI QR Code

Numerical Investigation of the Radial Convergence of Circular Tunnel Excavated in Rock Mass for Generalized Hoek-Brown

일반화된 Hoek-Brown 암반에 굴착된 원형터널의 내공변위 특성 분석

  • Lim, Kwang-Ok (Department of Ocean Science and Engineering, Kunsan National University) ;
  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • 임광옥 (군산대학교 해양산업공학과) ;
  • 이연규 (군산대학교 해양건설공학과)
  • Received : 2018.01.24
  • Accepted : 2018.02.22
  • Published : 2018.02.28

Abstract

Since the generalized Hoek-Brown (GHB) function predicts the strength of the jointed rock mass in a systematic manner by use of GSI index, it is widely used in rock engineering practices. In this study, a series of 2D elasto-plastic FE analysis, which adopts the GHB criterion as a yield function, was carried out to investigate the radial convergence characteristics of circular tunnel excavated in the GHB rock mass. The effect of the plastic potential function on the elasto-plastic displacement was also examined. In the analysis, the wide range of both the $K(={\sigma}_h/{\sigma}_v)$ and GSI values are considered. For each K value, the variation of the ratio of sidewall displacement to roof displacement was calculated with varying GSI values and the obtained displacement patterns were analysed. The calculation results show that the displacement ratio significantly depends not only on the K value but also on the range of GSI value. In particular, for lower range of GSI value, the displacement ratio pattern calculated in the elasto-plastic regime is opposite to that predicted by the elasticity theory. In addition, the variation of the radial displacement ratio with GSI value for different types of plastic potential function showed similar trend.

일반화된 Hoek-Brown(GHB) 파괴조건식은 GSI 지수를 통해 현장 암반의 절리상태를 체계적으로 고려하여 암반의 강도를 예측하는 파괴함수로서 암반공학적 설계에 널리 활용되고 있다. 이 연구에서는 절리성 암반에 굴착된 원형터널의 내공변위 특성을 분석하기 위하여 GHB 파괴조건식을 항복함수로 활용한 2차원 탄소성 유한요소해석을 수행하였다. 이 과정에서 소성포텐셜 함수의 가정이 탄소성 변위 해석결과에 미치는 영향도 고찰하였다. 탄소성 해석에서는 넓은 범위의 측압비(K) 변화와 암반의 양호성을 나타내는 GSI 값의 변화가 동시에 고려되었다. 각 측압비에 대해 GSI 값의 변화에 따른 측벽변위/천정변위 비를 계산하여 내공변위 발생특성을 분석하였다. 해석결과 측벽변위/천정변위 비는 측압비의 크기뿐만 아니라 GSI 값의 범위에 큰 영향을 받는 것으로 나타났다. 특히 GSI 값이 매우 작은 불량한 암반의 경우 탄소성해석으로 계산한 측벽변위/천정변위 비는 탄성이론으로 계산한 결과와 반대의 경향을 보였다. 또한 소성포텐셜 함수의 형태에 따른 측벽변위/천정변위 비 변화는 대체로 유사한 경향성을 보이는 것으로 나타났다.

Keywords

References

  1. Alejano, L.R., Alonso, E., Rodriguez-Dono, A. and Fernandez-Manin, C., 2010, Application of the convergence-confinement method to tunnel in rock masses exhibiting Hoek-Brown strain-softening behaviour, Int. J. Rock Mech. Min. Sci., 47, pp. 150-160.
  2. Carranza-Torres, C. and Fairhurst, C., 1999, The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion, Int. J. Rock Mech. Sci., 36, pp. 777-809.
  3. Clausen. J., 2007, Efficient non-linear finite element implementation of elasto-plasticity for geotechnical problems, Ph.D. thesis, Esbjerg Institute of Technology, Aalborg University.
  4. Clausen. J. and Damkilde. L., 2008, An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations, Int. J. Rock Mech. & Min. Sci., 45, pp. 831-847.
  5. Dassault Systemes, 2012, Abaqus analysis user's manual.
  6. Hoek, E. and Brown, E.T., 1980a, Underground Excavations in Rock, London: Insti. Min. Metall.
  7. Hoek, E. and Brown, E.T., 1980b, Empirical strength criterion for rock masses, J. Geotech. Eng. Div., ASCE, 106(GT9), pp. 1013-1035.
  8. Hoek, E. and Brown, E.T., 1997, Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., 34.8, pp. 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  9. Hoek, E., Marinos, P. and Benissi, M., 1998, Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation, Bull. Eng. Geol. Env., 57, pp. 151-160.
  10. Hoek, E., Carranza-Torres, C., and Corkum, B., 2002, Hoek-Brown criterion - 2002 edition, Proc. NARMS-TAC Conf., Toronto, pp. 267-273.
  11. Hoek, E. and Marinos P., 2007, A Brief History of the Development of the Hoek-Brown Failure Criterion, Soils and Rocks, Vol. 2, pp. 2-13.
  12. Lee, Y.K. and Pietruszczak, S., 2008, A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass, Tunnel. Under. Space Tech., 23, pp. 588-599.
  13. Lee, Y.K. and Park, K.S., 2010, Elasto-plastic analysis of circular tunnel with consideration of strain-softening of GSI index, Tunnel & Underground Space (J. Korean Soc. Rock Mech.), 20.1, pp. 49-57.
  14. Lee, Y.K., 2014a, Derivation of Mohr envelope of Hoek-Brown failure criterion using non-dimensional stress transformation, Tunnel & Underground Space (J. Korean Soc. Rock Mech.), 24.1, pp. 81-88. https://doi.org/10.7474/TUS.2014.24.1.081
  15. Lee, Y.K., 2014b, Relationship between tangential cohesion and friction angle implied in the generalized Hoek-Brown failure criterion, Tunnel & Underground Space (J. Korean Soc. Rock Mech.), 24.5, pp. 366-372. https://doi.org/10.7474/TUS.2014.24.5.366
  16. Lee, Y.K. and Pietruszczak, S., 2016, Analytical representation of Mohr failure envelope approximating the generalized Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci. (submitted).
  17. Lim, K.O. and Lee, Y.K., 2017, An Investigation on the Estimation Methods for the Equivalent Mohr-Coulomb Strength Parameters of Generalized Hoek-Brown Rock Mass, J. Korean Soc. Miner. Energy Resour. Eng., 54.1, pp.1-10.
  18. Marinos, P. and Hoek, E., 2000, GSI: a geologically friendly tool for rock mass strength estimation, In: Proc. GeoEng2000, Int. Conf. Geotech. & Geol. Eng., Melbourne, Technomic Publishers, Lancaster, pp 1422-1446.
  19. Sharan, S.K., 2005, Exact and approximate solutions for displacements around circular openings in elastic-brittle-plastic Hoek-Brown rock, Int. J. Rock Mech. Sci., 42, pp. 542-549
  20. Sharan, S.K., 2008, Analytical solutions for stresses and displacement around a circular opening in a generalized Hoek-Brown rock, Int. J. Rock Mech. Sci., 45, pp. 78-85.
  21. Sharan, S.K. and Naznin, R., 2012, Linearization of the Hoek-Brown failure criterion for non-hydrostatic stress fields, Proc. 8thInt. Conf. Eng. Comp., Tech. BHV Topping (Ed.), Civil-CompPress, Stirlingshire, Scotland.
  22. Sorensen, E.S., Clausen, J. and Damkilde, L., 2015, Finite element implementation of the Hoek-Brown material model with general strain softening behaviour, Int. J. Rock Mech. Sci., 78, pp. 163-174.
  23. Yang, X.L., Li, L., and Yin, J.H., 2004, Stability Analysis of Rock Slopes with a Modified Hoek-Brown Failure Criterion, Int. J. Num. Anal. Meth. Geomech., Vol. 28, pp. 181-190.
  24. Yang, X.L. and Yin, J.H., 2010, Slope Equivalent Mohr-Coulomb Strength Parameters for Rock Masses Specifying the Hoek-Brown Criterion, Rock Mech. Rock Eng., Vol. 43, pp. 505-511.