참고문헌
- Abrate, S. (2006), "Free vibration, buckling, and static deflections of functionally graded plates", Compos. Sci. Technol., 66, 2383-94. https://doi.org/10.1016/j.compscitech.2006.02.032
- Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031
- Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi Taher, H., Alibeigloo, A. and Vahabi, Sh. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis", Comput. Mater. Sci., 44, 951-961. https://doi.org/10.1016/j.commatsci.2008.07.001
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Atmane, H.A., Tounsi, A. and Mechab, I. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J Mech. Mater. Des., 6, 113-121. https://doi.org/10.1007/s10999-010-9110-x
- Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
- Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-53. https://doi.org/10.1016/j.compstruct.2011.01.020
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
- Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B Eng., 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6, 147-157. https://doi.org/10.1016/0167-6636(87)90005-6
- Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait Atmane, H. and Adda Bedia, E.A. (2010), "Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations", Mech. Compos. Mater., 46(4), 425-434. https://doi.org/10.1007/s11029-010-9159-5
- Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
- Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14, 5-33. https://doi.org/10.1177/1099636211426386
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Dehghan, H. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218, 2772-2784.
- Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
- Fang, X.Q., Hu, C. and Huang, W.H. (2007), "Determination of dynamic effective properties in functionally graded materials", Acta Mechanica, 192, 49-63. https://doi.org/10.1007/s00707-006-0440-6
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75, 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018
- Gasik, M. (1995), "Scand. Ch226", Acta Polytech, 72.
- Gasik, M.M. (1998), "Micromechanical modeling of functionally graded materials", Comput. Mater. Sci., 13, 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5
- Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory", Appl. Math. Mech., 32, 925-942. https://doi.org/10.1007/s10483-011-1470-9
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A, Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "Critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
- Ju, J. and Chen, T.M. (1994), "Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities", Acta. Mech., 103, 103-121. https://doi.org/10.1007/BF01180221
- Kar, V.R. and Panda, S.K. (2015), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Lat. Am. J. Solid. Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691
- Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", ASME J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
- Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
- Koizumi, M. (1993), "The concept of FGM", Ceram. Tran. Funct. Grad. Mater., 34, 3-10.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory", Compos. Struct., 82, 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw . Struct. Mater., 1099636217698443.
- Mishnaevsky, Jr. L. (2007), Computational Mesomechanics of Composites, John Wiley & Sons, England.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
- Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Bas. Des Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
- Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, USSR, Moscow. (in Russian)
- Pindera, M., Aboudi, J. and Arnold, S. (1995), "Limitations of the uncoupled, RVE-based micromechanical approach in the analysis of functionally graded composites", Mech. Mater., 20, 77-94. https://doi.org/10.1016/0167-6636(94)00052-2
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B, 35, 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
- Rahman, S. and Chakraborty, A. (2007), "A stochastic micromechanical model for elastic properties of functionally graded materials", Mech. Mater., 39, 548-563. https://doi.org/10.1016/j.mechmat.2006.08.006
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Reiter, T. and Dvorak, G.J. (1997), "Micromechanical models for graded composite materials", J. Mech. Phys. Solid., 46, 1655-1673.
- Sadoune, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321
- Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., 64(6), 737-749. https://doi.org/10.12989/SEM.2017.64.6.737
- Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018
- Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Modell., 34, 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
- Thai, H. and Choi, D. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71, 1850-8. https://doi.org/10.1016/j.compscitech.2011.08.016
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
- Weng, G.J. (2003), "Effective bulk moduli of two functionally graded composites", Acta Mechanica, 166, 57-67. https://doi.org/10.1007/s00707-003-0063-0
- Winkler, E. (1867), Die Lehre von der Elasticitaet und Festigkeit, Dominicus, Prag.
- Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory", Compos. Part B, 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014
- Yaghoobi, H. and Torabi, M. (2013), "Post-buckling and nonlinear free vibration analysis of geometrically imperfect functionally graded beams resting on nonlinear elastic foundation", Appl. Math. Model., 37(18-19), 8324-8340. https://doi.org/10.1016/j.apm.2013.03.037
- Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
- Yu, J. and Kidane, A. (2014), "Modeling functionally graded materials containing multiple heterogeneities", Acta. Mech., 225, 1931-1943. https://doi.org/10.1007/s00707-013-1033-9
- Zimmerman, R.W. (1994), "Behavior of the poisson ratio of a twophase composite material in the high-concentration limit", Appl. Mech. Rev., 47(1), 38-44. https://doi.org/10.1115/1.3122819
- Zine, A., Tounsi, A., Draiche, K., Mohamed Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/SCS.2018.26.2.125
- Zuiker, J.R. (1995), "Functionally graded materials-choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H
피인용 문헌
- A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads vol.7, pp.1, 2020, https://doi.org/10.12989/smm.2020.7.1.027
- Fundamental frequency analysis of functionally graded plates with temperature-dependent properties based on improved exponential-trigonometric two-dimensional higher shear deformation theory vol.91, pp.3, 2018, https://doi.org/10.1007/s00419-020-01793-1
- Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215