DOI QR코드

DOI QR Code

O2/Ar 관측에 기반한 순군집생산량 추정 연구 동향

Estimation of Net Community Production Based on O2/Ar Measurements

  • HAHM, DOSHIK (Department of Oceanography, Pusan National University) ;
  • LEE, INHEE (Department of Oceanography, Pusan National University)
  • 투고 : 2017.12.17
  • 심사 : 2018.01.22
  • 발행 : 2018.02.28

초록

순일차생산량과 종속 영양 생물의 호흡량의 차이로 정의되는 순군집생산량(net community production; NCP)은 해양 생물펌프의 척도로 활용되고 있다. 이 논문에서 소개하는 $O_2/Ar$ 관측에 기반한 NCP 추정법($O_2/Ar-NCP$)은 연구선의 이동 중에도 1분 미만의 고빈도로 $O_2/Ar$를 연속적으로 측정할 수 있어, 신생산량 혹은 방출생산량 등 전통적인 생물펌프 척도가 갖는 시간 혹은 공간 해상도의 제한을 혁신적으로 개선한 것이다. 논문에서는 $O_2/Ar-NCP$ 방법의 이론적 배경과 실험 장치의 구성에 대해 설명하였다. 또한 기존 생물펌프 척도와 $O_2/Ar-NCP$의 비교, 대양의 해역별 NCP 분포, 현장 관측 결과와 기계학습을 결합한 전 대양 NCP의 추정, 식물 플랑크톤 군집 구조와 NCP 연관성 등에 관한 주요 연구 사례들을 소개하였다.

Net community production (NCP), defined as the difference between net primary production and respiration of heterotrophs, has been used as a measure of oceanic biological carbon pump. This paper summarizes the theoretical background and experimental methods for the estimation of NCP based on $O_2/Ar$ measurements ($O_2/Ar-NCP$). The high frequency measurements of $O_2/Ar-NCP$ (<1 min) is a significant enhancement over the conventional measures of biological pump, such as new production and export production. This paper also introduces some of important works as to the comparison between $O_2/Ar-NCP$ and other measures of biological pump, the distributions of $O_2/Ar-NCP$ in the oceans, and the correlation of $O_2/Ar-NCP$ with various oceanic parameters, including community structures.

키워드

참고문헌

  1. Boyd, P. and P. Newton, 1995. Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep-Sea Research Part I, 42: 619-639. https://doi.org/10.1016/0967-0637(95)00017-Z
  2. Boyd, P.W., A.J. Watson, C.S. Law, E.R. Abraham, T. Trull, R. Murdoch, et al., 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407: 695-702. https://doi.org/10.1038/35037500
  3. Brennwald, M.S., M. Schmidt, J. Oser, and R. Kipfer, 2016. A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environmental Science & Technology, 50: 13455-13463. https://doi.org/10.1021/acs.est.6b03669
  4. Bronk, D.A. and B.B. Ward, (2000). Magnitude of dissolved organic nitrogen release relative to gross nitrogen uptake in marine systems. Limnol. Oceanogr, 45: 1879-1883. https://doi.org/10.4319/lo.2000.45.8.1879
  5. C.H. Chang, N.C. Johnson, and N. Cassar, 2014. Neural network-based estimates of Southern Ocean net community production from in-situ $O_2$/ Ar and satellite observation: a methodological study. Biogeosciences, 11: 3279-3297. https://doi.org/10.5194/bg-11-3279-2014
  6. Cassar, N., B.A. Barnett, M.L. Bender, J. Kaiser, R.C. Hamme, and B. Tilbrook, 2009. Continuous high-frequency dissolved $O_2$/Ar measurements by equilibrator inlet mass spectrometry. Analytical Chemistry, 81: 1855-1864. https://doi.org/10.1021/ac802300u
  7. Cassar, N., P.J. DiFiore, B.A. Barnett, M.L. Bender, A.R. Bowie, B. Tilbrook, et al., 2011. The influence of iron and light on net community production in the Subantarctic and Polar Frontal Zones. Biogeosciences, 8: 227-237. https://doi.org/10.5194/bg-8-227-2011
  8. Coale, K.H. and K.W. Bruland, 1985. $^{234}Th:^{238}$U disequilibria within the California Current. Limnol. Oceanogr, 30: 22-33. https://doi.org/10.4319/lo.1985.30.1.0022
  9. Craig, H., and T. Hayward, 1987. Oxygen supersaturation in the ocean: Biological versus physical contributions. Science, 235: 199-202. https://doi.org/10.1126/science.235.4785.199
  10. Dugdale, R.C. and J.J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr, 12: 196-206. https://doi.org/10.4319/lo.1967.12.2.0196
  11. Dunne, J., R. Armstrong, A. Gnanadesikan, J. Sarmiento, and R. Slater, 2005. Empirical and mechanistic models for the particle export ratio. Global Biogeochemical Cycles, 19.
  12. Eveleth, R., M.-L. Timmermans, and N. Cassar, 2014. Physical and biological controls on oxygen saturation variability in the upper Arctic Ocean. J. of Geophysical Research, 119: 7420-7432.
  13. Eveleth, R., N. Cassar, R.M. Sherrell, H. Ducklow, M.P. Meredith, H.J. Venables, et al., 2017. Ice melt influence on summertime net community production along the Western Antarctic Peninsula. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 139: 89-102. https://doi.org/10.1016/j.dsr2.2016.07.016
  14. Falkowski, P.G., E.A. Laws, , R.T. Barber, and J.W. Murray, 2003. Phytoplankton and their role in primary, new, and export production. In M. J. R. Fasham (Ed.), Ocean Biogeochemistry. Global Change - The IGBP Series (99-121 pp.). Springer Berlin Heidelberg.
  15. Ferron, S., S.T. Wilson, S. Martinez-Garcia, Quay, P.D., and D.M. Karl, 2015. Metabolic balance in the mixed layer of the oligotrophic North Pacific Ocean from diel changes in $O_2$/Ar saturation ratios. Geophysical Research Letters, 42: 3421-3430. https://doi.org/10.1002/2015GL063555
  16. Field, C.B., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237-240. https://doi.org/10.1126/science.281.5374.237
  17. Giesbrecht, K.E., R.C. Hamme, and S.R. Emerson, 2012. Biological productivity along Line P in the subarctic northeast Pacific: In situ versus incubation-based methods. Global Biogeochemical Cycles, 26: GB3028.
  18. Hahm, D., T.S. Rhee, H.C. Kim, J. Park, Y.N. Kim, H.C. Shin, and S. Lee, 2014. Spatial and temporal variation of net community production and its regulating factors in the Amundsen Sea, Antarctica. J. of Geophysical Research, 119: 2815-2826.
  19. Hamme, R., N. Cassar, V. Lance, R. Vaillancourt, M. Bender, P. Strutton, et al. 2012. Dissolved $O_2$/Ar and other methods reveal rapid changes in productivity during a Lagrangian experiment in the Southern Ocean. J. Geophys. Res, 117: C00F12.
  20. Hamme, R.C., and J.P. Severinghaus, 2007. Trace gas disequilibria during deep-water formation, 54: 939-950. https://doi.org/10.1016/j.dsr.2007.03.008
  21. Howard, E.M., C.A. Durkin, G.M.M. Hennon, F. Ribalet, and R.H.R. Stanley, 2017. Biological production, export efficiency, and phytoplankton communities across 8,000 km of the South Atlantic. Global Biogeochemical Cycles, 31: 1066-1088. https://doi.org/10.1002/2016GB005488
  22. IPCC, W., 2013. Climate Change 2013: The Physical Science Basis. (T. F. Stocker, D. Qin, G.-K. Plattner, M. B. Tignor, S. K. Allen, J. Boschung, et al., Eds.) (1-1552 pp.).
  23. Kaiser, J., M.K. Reuer, B. Barnett, and M.L. Bender, 2005. Marine productivity estimates from continuous $O_2$/Ar ratio measurements by membrane inlet mass spectrometry. Geophysical Research Letters, 32.
  24. Kana, T., C. Darkangelo, M. Hunt, J. Oldham, G. Bennett, and J. Cornwell, 1994. Membrane inlet mass spectrometer for rapid high-precision determination of $N_2$, $O_2$, and Ar in environmental water samples. Anal. Chem., 66: 4166-4170. https://doi.org/10.1021/ac00095a009
  25. Kana, T.M., J.C. Cornwell, and L. Zhong, 2006. Determination of denitrification in the chesapeake bay from measurements of $N_2$ accumulation in bottom water. Estuaries and Coasts, 29: 222-231. https://doi.org/10.1007/BF02781991
  26. Laws, E., P. Falkowski, W. Smith, H. Ducklow, and J. McCarthy, 2000. Temperature effects on export production in the open ocean. Global Biogeochemical Cycles, 14: 1231-1246. https://doi.org/10.1029/1999GB001229
  27. Laws, E.A., 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Research, 38: 143-167. https://doi.org/10.1016/0198-0149(91)90059-O
  28. Laws, E.A., E. D'Sa, and P. Naik, 2011. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr.: Methods, 9: 593-601. https://doi.org/10.4319/lom.2011.9.593
  29. Li, Z. and N. Cassar, 2016. Satellite estimates of net community production based on $O_2$/Ar observations and comparison to other estimates. Global Biogeochemical Cycles, 30: 735-752. https://doi.org/10.1002/2015GB005314
  30. Lockwood, D., P.D. Quay, M.T. Kavanaugh, L.W. Juranek, and R.A. Feely, 2012. High-resolution estimates of net community production and air-sea $CO_2$ flux in the northeast Pacific. Global Biogeochemical Cycles, 26: GB4010.
  31. Machler, L., M.S. Brennwald, and R. Kipfer, 2012. Membrane inlet mass spectrometer for the quasi-continuous on-site analysis of dissolved gases in groundwater. Environmental Science & Technology, 46: 8288-8296. https://doi.org/10.1021/es3004409
  32. Manning, C.C., R.H.R. Stanley, D.P. Nicholson, J.M. Smith, J. Timothy Pennington, M.R. Fewings, et al., 2017. Impact of recently upwelled water on productivity investigated using in situ and incubation-based methods in Monterey Bay. J. of Geophysical Research, 122: 1901-1926.
  33. Martin, J.H., G.A. Knauer, D.M. Karl, and W.W. Broenkow, 1987. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research Part a. Oceanographic Research Papers, 34: 267-285. https://doi.org/10.1016/0198-0149(87)90086-0
  34. Nemcek, N., D. Ianson, and P.D. Tortell, 2008. A high-resolution survey of DMS, $CO_2$, and $O_2$/Ar distributions in productive coastal waters. Global Biogeochemical Cycles, 22: GB2009.
  35. Palevsky, H.I., F. Ribalet, and J.E. Swalwell, 2013. The influence of net community production and phytoplankton community structure on $CO_2$ uptake in the Gulf of Alaska. Global Biogeochemical Cycles, 27: 664-676. https://doi.org/10.1002/gbc.20058
  36. Park, J., F.I. Kuzminov, B. Bailleul, E.J. Yang, S. Lee, P.G. Falkowski, and M.Y. Gorbunov, 2017. Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnol. Oceanogr, 48: 2260-2276.
  37. Reuer, M., B. Barnett, M. Bender, P. Falkowski, and M. Hendricks, 2007. New estimates of Southern Ocean biological production rates from $O_2$/Ar ratios and the triple isotope composition of $O_2$. Deep-Sea Research Part I, 54: 951-974. https://doi.org/10.1016/j.dsr.2007.02.007
  38. Richardson, T.L. and J. GA, 2007. Small phytoplankton and carbon export from the surface ocean. Science, 315: 838-840. https://doi.org/10.1126/science.1133471
  39. Sabine, C., R. Feely, N. Gruber, R. Key, K. Lee, J. Bullister, et al., 2004. The Oceanic Sink for Anthropogenic $CO_2$. Science, 305: 367-371. https://doi.org/10.1126/science.1097403
  40. Stanley, R.H.R. and W.J. Jenkins, 2013. Noble Gases in Seawater as Tracers for Physical and Biogeochemical Ocean Processes. In P. Burnard (Ed.), The Noble Gases as Geochemical Tracers (55-79 pp.). Berlin, Heidelberg: Springer Berlin Heidelberg.
  41. Stanley, R.H.R., J. Kirkpatrick, N. Cassar, B. Barnett, and M. Bender, 2010. Net community production and gross primary production rates in the western equatorial Pacific. Global Biogeochemical Cycles, 24.
  42. Stukel, M.R. and M.R. Landry, 2010. Contribution of picophytoplankton to carbon export in the equatorial Pacific: A reassessment of food web flux inferences from inverse models. Limnol. Oceanogr, 55: 2669-2685. https://doi.org/10.4319/lo.2010.55.6.2669
  43. Takahashi, T., C. Sweeney, B. Hales, D. Chipman, T. Newberger, J. Goddard, et al., 2012. The changing carbon cycle in the Southern Ocean. Oceanography, 25: 26-37. https://doi.org/10.5670/oceanog.2012.71
  44. Tortell, P.D., 2005. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry, 3: 24-37. https://doi.org/10.4319/lom.2005.3.24
  45. Ulfsbo, A., N. Cassar, M. Korhonen, S. van Heuven, M. Hoppema, G. Kattner, and L.G. Anderson, 2014. Late summer net community production in the central Arctic Ocean using multiple approaches. Global Biogeochemical Cycles, 2014GB004833.
  46. Volk, T. and M.I. Hoffert, 1985. Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric $CO_2$ Changes. In The Carbon Cycle and Atmospheric $CO_2$: Natural Variations Archean to Present (99-110 pp.). Washington, D. C.: American Geophysical Union.