DOI QR코드

DOI QR Code

Application of SWAT Model considering Spatial Distribution of Rainfall

강우의 공간분포를 고려한 SWAT 모형의 적용

  • JANG, Daewon (Risk Management Institute, LIG System Co., Ltd.) ;
  • KIM, Duckgil (Risk Management Institute, LIG System Co., Ltd.) ;
  • KIM, Yonsoo (Risk Management Institute, LIG System Co., Ltd.) ;
  • Choi, Wooil (Risk Management Institute, LIG System Co., Ltd.)
  • 장대원 ((주)LIG시스템 위험관리연구소) ;
  • 김덕길 ((주)LIG시스템 위험관리연구소) ;
  • 김연수 ((주)LIG시스템 위험관리연구소) ;
  • 최우일 ((주)LIG시스템 위험관리연구소)
  • Received : 2018.01.12
  • Accepted : 2018.02.13
  • Published : 2018.02.28

Abstract

In general, the rainfall-runoff simulation is performed using rainfall data from meteorological and observational rain gauge stations. However, if we only use rainfall data from meteorological and observational rain gauge stations for runoff simulation of a large watershed, the problem in the reliability of the simulated runoff can be occurred. Therefore, this study examined the influence of the rainfall data on the simulated runoff volume by a Semi-distributed model. For this, we used rainfall data from meteorological stations, meteorological and observational stations, and a spatially distributed rainfall data from hypothetical stations obtained by kriging method. And, we estimated the areal rainfall of each sub-basin. Also the estimated areal rainfall and the observed rainfall were compared and we compared the simulated runoff volumes using SWAT model by the rainfall data from meteorological and observational rain gauge stations and runoff volume from the estimated areal rainfall by Kriging method were analyzed. This study was performed to examine the accuracy of calculated runoff volume by spatially distributed areal rainfall. The analysis result of this study showed that runoff volume using areal rainfall is similar to observed runoff volume than runoff volume using the rainfall data of weather and rain gauging station. this means that spatially distributed rainfall reflect the real rainfall pattern.

강우-유출 모의를 수행할 때 기상 및 강우관측소의 자료를 이용하는 것이 일반적이다. 그러나 유역면적이 클 경우 기상 및 강우관측소의 자료만으로 신뢰성 있는 유출량을 산정하기란 어렵다. 따라서 본 연구에서는 이용되는 강우자료에 따라 준분포형 모형에 의해 산정되는 유출량에 미치는 영향을 검토하기 위해 대상유역에 위치하고 있는 기상관측소의 강우자료, 기상 및 강우관측소의 강우자료, 크리깅 기법에 의해 기상 및 강우관측소의 강우자료를 공간적으로 분포시켜 얻은 가상지점의 관측 강우자료를 이용해 각 소유역의 면적 강우량을 산정하였다. 또한 각각의 강우자료들을 비교하였으며, 분포형 모형인 SWAT모형을 이용하여 각각의 강우자료에 따른 유출량을 비교 분석하였다. 본 연구는 공간 분포된 면적강우량을 이용해 산정된 유출량의 정확성을 검토하기 위한 것으로써 분석 결과, 공간 분포된 면적 강우량을 이용한 유출량이 기상 및 강우관측소의 강우량을 이용한 유출량보다 실제 유출량을 보다 더 잘 모의하는 것으로 나타났다. 이는 공간 분포된 강우가 실제 강우패턴을 가장 잘 반영한다고 할 수 있다.

Keywords

References

  1. Abtew, W. and Shih, G. (1993). Spatial analysis for monthly rainfall in south Florida, Water Resources Bulletin, Vol. 29, No. 2, pp. 179-188.
  2. Ahn, SJ, Yoon, SH and Hahm, CH (2005). Runoff Analysis using Spatial distributed Rainfall, 2005 Proceedings of the Korea Water Resources Association Conference, pp. 80-84. [Korean Literature]
  3. Choi, HY, Lee, SJ, Lee, JW and Jung, SW (2008). The Runoff rate Comparison by Spatial Distribution and Density of Rainfall station, 2008 Proceedings of the Korea Water Resources Association Conference, pp. 790-794. [Korean Literature]
  4. Jang, DW (2004). Simulation of Daily Streamflows by SWAT Based on GIS, Master's Thesis, Inha University. [Korean Literature]
  5. Kim, JS, Rim, HW, Um, MJ, Kim, WI and Ahn, WS (2008). Spatial Adjustment of Rainfall using Kriging Method and Application of Distributed Model, 2008 Proceedings of the Korea Water Resources Association Conference, pp. 130-134. [Korean Literature]
  6. Li, M., Shao, Q. and Renzullo, L. (2009). Estimation and spatial interpolation of rainfall intensity distribution from the effective rate of precipitation, Stochastic Environmental Research and Risk Assessment, Vol. 23, No. 2, pp. 253-261. https://doi.org/10.1007/s00477-007-0205-3
  7. Milly, P.C.D. and Eagleson, P.S. (1998). Effect of Storm Scale on Surface Runoff Volume, Water Resour. Res., Vol. 24, No. 4, pp. 249-260.
  8. Ministry of Construction and Transportaton (2006). Water resource management plan(2006-2020). [Korean Literature]
  9. Nash, E.J. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual mode : Part 1 - A discussion of principles, J. of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  10. Neitsch, S.L., Arnold, J.G., Kinity, J.R. and Williams, J.R. (2001). Soil and Water Assessment tool, Theoretical Documentation Version 2000, USDA ARS, Temple, Texas.
  11. Salas, J.D., Smith, R.A., Tabios, G.Q., and Heo, J.H.(1994). Statistical computer techniques in water resources and environmental engineering, Department of civil engineering Colorado State University
  12. Servat, E. and Dezetter, A. (1991). Selection of calibration objective functions in the context of rainfall-runoff modelling in a sudanese savannah area, Hydrological Sciences Journal, Vol. 36, pp. 307-330. https://doi.org/10.1080/02626669109492517
  13. Yeo, WK (2005). Status and Development Direction of Domestic Hydrological Investigation, Water for future, VOL. 38, NO.5, pp. 44-48. [Korean Literature]
  14. Yoon, JH, Seo, BC and Shin, HS (2004). Spatial Analysis of Flood Rainfall Based on Kriging Technique in Nakdong River Basin, J. of the Korea Water Resources Association, Vol. 37, No. 2, pp. 233-240. [Korean Literature] https://doi.org/10.3741/JKWRA.2004.37.3.233
  15. Yoon, YN (2007). Hydrology, Cheong Moon Gak Publishing. [Korean Literature]