DOI QR코드

DOI QR Code

Characteristics of Naturally Occurring Radioactive Materials in Groundwater from Aquifers Composed of Different Geological Settings in Ganghwa Island

강화도의 지질별 지하수 중 자연방사성 물질의 특성

  • Kim, Ikhyun (National Institute of Environmental Research) ;
  • Kim, MoonSu (National Institute of Environmental Research) ;
  • Hamm, Se-Yeong (Dept. of Geological Sciences, Pusan National University) ;
  • Kim, Hyunkoo (National Institute of Environmental Research) ;
  • Kim, Dongsoo (National Institute of Environmental Research) ;
  • Jo, Seongjin (National Institute of Environmental Research) ;
  • Lee, Heonmin (National Institute of Environmental Research) ;
  • Hwang, Jongyeon (National Institute of Environmental Research) ;
  • Jo, Hunje (National Institute of Environmental Research) ;
  • Park, Sunhwa (National Institute of Environmental Research) ;
  • Chung, Hyenmi (National Institute of Environmental Research)
  • Received : 2018.02.05
  • Accepted : 2018.02.27
  • Published : 2018.02.28

Abstract

Groundwaters in different rock types (Mesozoic granite, Precambrian gneiss, and schist) of Ganghwa island, Incheon City were characterized by using naturally occurring radioactive materials (NORM) and hydrogeochemical constituents. For the study, groundwater samples from 69 wells had been collected over eight years. Statistical methods were applied to relate hydrogeochemical components and NORM in the groundwater samples. The groundwater samples belonged to $Ca(Na)-HCO_3$ types. The uranium concentrations in three groundwater samples exceeded 30 ug/L of United States Environmental Protection Agency (US EPA) maximum contaminant level (MCL). The radon concentrations in 28 groundwater samples exceeded 4,000 pCi/L (picocuries per Liter) of US EPA alternative maximum contaminant level (AMCL). Gross-alpha in all the groundwater samples did not exceed 15 pCi/L of US EPA MCL. The average concentrations of uranium and radon in groundwater were the highest in granite area, and then gneiss, schist areas in order. In schist area, the correlation coefficient (R) between radon and $HCO_3$ is -0.40 and R between uranium and $SO_4$ is 0.54. In gneiss area, the R between radon and uranium is 0.55 and the R between uranium and $SO_4$ is 0.41. According to factor analysis, each geological area shows different chemical characteristics. The statistical analysis of whole groundwater resulted in nearly no significant relationship among uranium, radon and chemical constituents. Subsequently, more detailed studies on hydrogeological, geochemical, and geological characteristics related to NORM are required to better understand the behavior and fate of NORM.

인천시 강화도의 지질별(중생대 화강암, 선캠브리아 편마암, 편암) 지하수의 자연방사성 물질과 수리지화학 성분의 특성을 연구하였다. 이 연구를 위하여, 8년 동안 69개 관정에서 지하수 시료를 채수하였다. 통계 분석을 이용하여 지하수의 수리지화학 성분과 자연방사성 물질의 관계를 분석하였다. 연구 지역 지하수의 수질유형은 $Ca(Na)-HCO_3$ 형으로 나타났다. 우라늄은 3 개 지하수 시료에서 US EPA의 MCL(최대 오염 물질 수준)인 30 ug/L을 초과하였다. 라돈은 28개 지하수 시료에서 US EPA의 제안치인 AMCL(대체 최대 오염 물질 수준)인 4,000 pCi/L을 초과하였다. 모든 지하수 시료의 전알파(Gross-alpha)는 US EPA MCL인 15 pCi/L를 초과하지 않았다. 지하수에서의 우라늄과 라돈의 평균농도는 화강암에서 가장 높고, 그 다음으로 편마암, 편암의 순이다. 편암 지역의 라돈은 $HCO_3$와 -0.40, 우라늄은 $SO_4$과 0.54의 상관계수를 보였고, 편마암 지역의 경우 라돈은 우라늄과 0.55, 우라늄은 $SO_4$과 0.41의 상관계수를 보였다. 요인분석에 의하면, 지질별로 각각 다른 거동특성을 가진다. 전체 지하수의 통계 분석 결과, 우라늄과 라돈 그리고 지화학 성분들 간에는 대체로 특이한 상관성을 나타내지 않았다. 자연방사성 물질의 거동과 운명을 보다 명확하게 이해하기 위해서는 자연방사성 물질의 수리지질학적, 지구화학적, 지질학적 특성에 대한 보다 상세한 연구가 요구된다.

Keywords

References

  1. Arvela, H., Blomqvist, L. and Mustonen, R. (1979) In Situ External Environmental Gamma Ray measurements, In: Studies on Environmental Radioactivity in Finland 1976-1977, Report STL-A 26, Helsinki; Institute of Radiation Protection.
  2. Asikainen, M. and Kahlos, H. (1979) Anomalously high concentration of uranium, radium and radon in water from drilled wells in the Helsinki region. Geochimica et Cosmochimica Acta, v.43, p.1681-1686. https://doi.org/10.1016/0016-7037(79)90187-X
  3. Banks D., Bjorn F., Aase K.M., Jan R.K. and Terje, S. (1998) The chemistry of Norwegian groundwaters : I. The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters. The Science of the Total Environment, v.222, p.71-1. https://doi.org/10.1016/S0048-9697(98)00291-5
  4. Bonotto, D.M. (2006) Hydro(radio)chemical relationships in the giant Guarani aquifer, Brazil. Journal of Hydrology, v.323, p.353-386. https://doi.org/10.1016/j.jhydrol.2005.09.007
  5. Cho, B.W., Choo, C.O., Kim, M.S., Lee, Y.J., Yun, U. and Lee, B.D. (2011) Uranium and radon concentrations in groundwater near the Icheon Granite. The Journal of Engineering Geology, v.21, p.259-269. (In Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.3.259
  6. Cho, B.W., Kim, M.S., Kim, T.S., Han, J.S., Yun, U., Lee, B.D., Hang, J.H. and Choo, C.O. (2012) Hydrochemistry and distribution of uranium and radon in groundwater of the Nonsan area. The Journal of Engineering Geology, v.22, p.427-437. (In Korean with English abstract). https://doi.org/10.9720/kseg.2012.4.427
  7. Cho, B.W., Kim, M.S., Kim, T.S., Uk Yun, Lee, B.D., Hwang, J.H., and Choo, C.O. (2013) Characteristics of Occurrence and Distribution of Natural Radioactive Materials, Uranium and Radon in Groundwater of the Danyang Area. The Journal of Engineering Geology, v.23, p.477-491. https://doi.org/10.9720/kseg.2013.4.477
  8. Cothern, C.R. and Rebers, P.A. (1990) Radon, radium and uranium in drinking water. Lewis publishers, p.283.
  9. Currie, L.A. (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical chemistry, v.40, p.586-593. https://doi.org/10.1021/ac60259a007
  10. Dahlkamp, F.J. (1993) Uranium ore deposits. Springer Science & Business Media., p.25-30.
  11. David, S.V., Avner, V., Daniella, H. and Gary, S.D. (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chemical Geology, v.260, p.159-171. https://doi.org/10.1016/j.chemgeo.2008.10.022
  12. Health Canada (1968) The Guidelines for Canadian Drinking Water Quality and the Guideline Technical Documents.
  13. Hess, C.T., Michel, J., Horton, T.R., Prichard, H.M. and Coniglio W.A. (1985) The occurrence of radioactivity in public water supplies in the United States. Health Physics, v.48, p.553-586. https://doi.org/10.1097/00004032-198505000-00002
  14. Hwang, J.H. and Kihm, Y.H. (2005) Geology Report of the Ganghwa.Onsuri Sheet. Korea Institute of Geoscience and Mineral Resources, p.4-7.
  15. Jeong, D.H., Lee, Y.J., Ju, B.K., Noh, H.J., Yu, S.J. and Kim, M.S. (2011) Study on Gross-alpha Characteristics of Groundwater for Drinking in Korea. Journal of KoSSGE, v.16, p.67-73.
  16. Kim, D.S. (2014) A study on characteristics hydrogeochemistry and naturally occuring radioactive materials in groundwater in domestic sedimentary rock area. master's thesis, Pukyong National University, p.13-17.
  17. Kim, Y.J., Cho, S.Y., Yoon, Y.Y. and Lee, K.Y. (2006) Optimal Method of Radon Analysis in Groundwater using Ultra Low-Level Liquid Scintillation Counter. Journal of KoSSGE, v.11, p.59-66.
  18. National Institute of Environmental Research (2008) An investigation of natural radionuclide levelsin groundwater(II) (NIER No. 2008-67-1017), p.15, p.113.
  19. National Institute of Environmental Research (2009) An investigation of natural radionuclide levelsin groundwater(III) (NIER No. 2009-61-1117), p.22, P.74-75.
  20. National Institute of Environmental Research (2010) An Investigation on Natural Radioactivity Levels in Groundwater('10) (NIER No. 2010-47-1222), p.163-174.
  21. National Institute of Environmental Research (2011) Study on Naturally Occurring Radioactive Materials (N.O.R.M) in Groundwater in South Korea ('11) (NIER-RP2011-1401), p.172-185.
  22. National Institute of Environmental Research (2012) Study on Naturally Occurring Radioactive Materials (N.O.R.M) in Groundwater in South Korea ('12) (NIER-RP2012-196), p.121-144.
  23. National Institute of Environmental Research (2013) Study on Naturally Occurring Radioactive Materials (N.O.R.M) in Groundwater in South Korea ('13) (NIER-RP2013-384), p.161-183.
  24. National Institute of Environmental Research (2014) Study on Naturally Occurring Radioactive Materials (N.O.R.M) in Groundwater in South Korea ('14) (NIER-RP2014-383), p.246-290.
  25. National Institute of Environmental Research (2015) Study on Naturally Occurring Radioactive Materials (N.O.R.M) in Groundwater in South Korea ('15) (NIER-RP2015-388), p.169-189.
  26. STUK (2005) 238U-series radionuclides in Finnish groundwater-based drinking water and effective doses. STUK-A123, p.94.
  27. USGS (1962) Data on uranium and radium in groundwater in the USA. Professional Paper No. 426.
  28. Wathen, J.B. (1987) The effect of uranium sitting in twomica granites on uranium concentrations and radon activity in groundwater. Proceedings of the NWWA conference, p.31-45.
  29. World Health Organization (2011) Guidelines for Drinking-water Quality, fourth edition., WHO Library Cataloguing-in-Publication Data, p.204-206
  30. Wilhelm, E., Battino, R. and Wilcox, R.J. (1977) Lowpressure Solubility of Gases in liquid water
  31. Wrenn, W.M., Spitz, H. and Och, C.N. (1975) Design of a continuous digital output environmental radon monitor. IEEE Trans. Nucl. Sci. NS-22, p.645.