DOI QR코드

DOI QR Code

1500 A, 400 mH급 초전도 직류 리액터용 극저온 냉각 시스템 구조 설계 및 열 해석

Structure Design and Thermal Analysis of Cryogenic Cooling System for a 1500 A, 400 mH Class HTS DC Reactor

  • 투고 : 2017.09.21
  • 심사 : 2018.02.27
  • 발행 : 2018.02.28

초록

이 논문에서는 대 전류, 고온 초전도 직류 리액터를 위한 전도 냉각 시스템의 구조 설계에 대해 논의하고자 한다. 초전도 자석, 보 빈, 전류 리드, 고정용 구조물 그리고 열 교환기가 포함된 전도 냉각 시스템 부품의 크기를 3D CAD 프로그램을 사용하여 계산하였다. 또한, 최적의 설계 변수를 결정하고 열적-기계적 특성을 분석하기 위해서 유한 요소법 모델을 제작하였다. 리액터 자석의 운전 전류와 인덕턴스는 각각 1,500 A 400 mH이며, 이에 따른 극저온 냉동기의 냉각 용량을 결정하기 위해 초전도 직류 리액터에서 발생하는 열 부하를 계산하였다. 또한, 대 전류가 흐르는 1 단부전도 냉각 시스템의 작동 테스트를 수행하였다. 구리 바는 40 K까지 냉각되었고 초전도 리드는 안정적으로 작동했다. 실험 결과로써, 1 단부 영역의 총 열 부하는 190 W였다. 본 연구 결과는 상용 초전도 직류 리액터의 설계 및 제조에 있어 효과적으로 활용 될 것이다.

This paper discusses a structure design and thermal analysis of cryogenic conduction cooling system for a high current HTS DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. Hence, we carried out the operating test of conduction cooling system of the 1st stage area with high current flow. The cooper bars was cooled down to 40 K and HTS leads operated stably. As a experiment result, the total heat load of the 1st stage area is 190 W. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

키워드

참고문헌

  1. Go, B. S. Kim, K. Park, M. Kim, S. H. Yu, I. K. and Lee, S., "Detailed Design of a 2,000 A, 400 mH Toroid-Type HTS DC Reactor for an HVDC System," J. Supercond. Novel Magn, Vol. 28, No. 2, pp. 629-632, 2015. https://doi.org/10.1007/s10948-014-2783-x
  2. Kim, K. Kim, S. K. Park, M. Ha, H. S. Sohn, M. H. Kim, K. Lee, H. Yu, I. K., "Design and Operating Characteristic Analysis of D-Shape HTS Coil for 1500-A 400-mH Class Toroid-Type HTS DC Reactor," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 3, pp. 1-5, 2016.
  3. Schoenung, S. M. Meier, W. R. and Hassenzahl, W. V., "A Comparison of Large-Scale Toroidal and Solenoidal SMES Systems," in IEEE Transactions on Magnetics, Vol. 27, No. 2, pp. 2324-2328, 1991. https://doi.org/10.1109/20.133683
  4. Kim, K. Kim, J. G. Jung, H. Kim, S. Lee, S. Park, M. and Yu, I. K., "Design of a 400 mH 400 A Toroid-Type HTS DC Reactor Magnet," in IEEE Transactions on Applied Superconductivity, Vol. 23, No. 3, pp. 4601104-4601104, 2013. https://doi.org/10.1109/TASC.2012.2234184
  5. Yeom, H. K. Hong, Y. J. Park, S. J. Seo, T. B. Seong, K. C. and Kim, H. J., "Study of Cryogenic Conduction Cooling Systems for an HTS SMES," in IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, pp. 1955-1958, 2007. https://doi.org/10.1109/TASC.2007.898491
  6. Kim, K. M. Kim, A. R. Park, H. Y. Kim, J. G. Park, M. Yu, I. K. Kim, S. H. Sim, K. Seong, K. C. and Won, Y. J., "Design and Mechanical Stress Analysis of a Toroidal-Type SMES Magnet," in IEEE Transactions on Applied Superconductivity, Vol. 20, No. 3, pp. 1900-1903, 2010. https://doi.org/10.1109/TASC.2010.2044782
  7. Hong, Y. J. Yeom, H. K. Park, S. J. Kim, S. H., and Choi, Y. D. "Temperature Distribution of Cryogenic Conduction Cooling System for a HTS SMES," in IEEE Transactions on Applied Superconductivity, Vol. 18, No. 2, pp. 745-749, 2008. https://doi.org/10.1109/TASC.2008.922237
  8. Hull, Y J. R., "High Temperature Superconducting Current leads for Cryogenic Apparatus," Energy Conversion Engineering Conference, IECEC-89., Proceedings of the 24th Intersociety, (Washington, DC), Vol. 1, pp. 459-464, 1989.
  9. Chang, H. M. Kim, M. J. "Optimization of Conduction-Cooled Current leads with Unsteady Operating Ccurrent," Cryogenics, Vol. 49, pp. 210, 2009. https://doi.org/10.1016/j.cryogenics.2009.01.006