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Abstract – An electrostatic boundary-value problem of a dielectric-wedge-backed, double-slotted 
conducting wedge is investigated to analyze an asymmetric coplanar waveguide with an infinite 
dielectric thickness using the Mellin transform and a mode-matching method. Our theoretical solution 
based on eigenfunction expansion and residue calculus is a rigorous and fast-convergent series form. 
Numerical computations are conducted to evaluate the potential field, capacitance, and characteristic 
impedance for various structures of the asymmetric coplanar waveguide. The computed results show 
good agreement with the simulated results. 
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1. Introduction 
 
The coplanar waveguide (CPW) has become a potential 

candidate in the design and manufacture of microwave 
integrated circuits (MICs) due to advantages such as its 
low dispersion, simplicity of fabrication, and straight-
forward shunt and series connections without via holes [1]. 
In an effort to offer flexibility in the design of asymmetric 
integrated circuits, an asymmetric coplanar waveguide 
(ACPW) was investigated by Hanna and Thebault [2, 3], 
who utilized conformal mapping techniques. Since its 
introduction, various methods have been applied in the 
analysis of the ACPW. The propagation characteristics of 
the ACPW with a finite metallization thickness were 
investigated by combining a spectral-domain approach 
with a perturbation method [4]. The quasi-static parameters 
(the characteristic impedance and the effective dielectric 
constant) of the ACPW were determined based on an 
artificial neural network [5, 6]. A finite-difference time-
domain method and a modal technique were also employed 
to evaluate the characteristics of the ACPW with a finite 
dielectric thickness [7, 8]. 

The purpose of the present research is to analyze an 
ACPW with not only asymmetric slots but also asymmetric 
ground planes on an infinitely thick dielectric substrate. As 
a continuation of earlier works [9, 10], an electrostatic 
boundary-value problem of a double-slotted conducting 
wedge with a dielectric wedge is solved to derive a 
rigorous solution for the ACPW using the Mellin transform 
and a mode-matching method. The analysis of an 
asymmetric coplanar waveguide (ACPW) here is obviously 

an extension of the work in an earlier study [10]. The 
present study addresses a problem associated with the 
ACPW, an important type of transmission line. In order to 
verify the validity of the proposed method, computations 
for the potential field, capacitance, and characteristic 
impedance of the ACPW are performed and the results are 
compared with simulated results. Details of the field 
representation and numerical results for the ACPW are 
described in the following sections.  

 
 

2. Field Representation 
 
Fig. 1(a) shows a cross-sectional view of an ACPW 

structure on an infinitely thick dielectric substrate (h = ∞) 
with relative permittivity e2r. A central strip conductor with 
a width of s is located between two asymmetric ground 
planes. In contrast to ACPWs considered in earlier studies 
[2, 3], the proposed ACPW has one finite ground plane 
with a width of a and a semi-infinite ground plane. 
Consequently, the distance of separation between the finite 
and semi-infinite ground planes is equal to w1+s+w2. In the 
analysis that follows, all conducting strips are assumed to 
have a zero thickness and perfect conductivity. In order to 
apply the Mellin transform and mode-matching to analyze 
this ACPW, we consider the boundary-value problem of a 
double-slotted conducting wedge with a dielectric wedge, 
as shown in Fig. 1(b). The electrostatic potential V is 
induced across an intermediate wedge section (b ≤ r≤ c 
and 0 ≤ f ≤ f0) between two slots with an angle of f0. Note 
that the width of the intermediate wedge section (c-b) is 
equal to s and that the widths of the left and right slots are 
b-a(= w1) and d-c(= w2), respectively. Based on the Mellin 
transform [11], the electrostatic potential fields in region 
(I) (f 0 ≤ f ≤ a ) and region (II) (a ≤ f ≤ 2p ) are represented 
as 
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Fig. 1. (a) Asymmetric coplanar waveguide on an infinitely 
thick dielectric substrate, and (b) analysis model of 
a double-slotted conducting wedge with a dielectric 
wedge 
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In the two slots (region (III): a ≤r≤ b and 0 ≤f≤f0; 

region (IV): c ≤r≤ d and 0 ≤f≤f0), the potential fields are 
given by the superposition principle:  
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where fm1=mp/ln(b/a), fm2=mp/ln(c/d), and bn=np/f0. 

For the derivation of the mathematical formulas for the 
ACPW from the analysis model of the double-slotted 
conducting wedge, f0 and a are replaced with 0 and p , 
respectively. Field continuities at each boundary are 

applied to determine the unknown modal coefficients Am, 
Bm, Cm, and Dm. First, the Dirichlet boundary conditions at 
f=0, f=p, and f=2p are enforced, as follows:  
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Applying the Mellin transform to (5), (6), and (7) gives 

the following equations:  
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Accounting for the field orthogonality 
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to (11) and (13) results in four sets of simultaneous 
equations:  
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It is important to note that the integral (18)-(20) can be 

converted into the fast-convergent series using residue 
calculus, as follows:  
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where ( ) sec( 2 ) 1G z z p= -  and (2 1) / 2v vz = - . The 
electrostatic potential fields in regions (I) and (II) are then 
represented in a series form after solving (14) and (15) for 
the unknown modal coefficients (Am, Bm, Cm, and Dm), as 
follows:  
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(a) 

 
(b) 

  
(c) 

Fig. 2. (a) Magnitude of the potential on an aperture; (b) 
computed and (c) simulated equipotential contour 
of an ACPW when a=1.0 mm, s=1.0 mm, w1=1.0 
mm, w2=2.0 mm, e1r=e3r =e4r =1.0, and e2r=2.0 

 
 

3. Numerical Results 
 
In order to show the validation of our theoretical 

solution, numerical computations are performed for various 
structures of the ACPW. Fig. 2(a) shows the computed 

and simulated results for the magnitude of the potential 
field on an aperture of the ACPW (f0=0°). Our theoretical 
result is in good agreement with the simulated result 
using EM Studio of CST [12]. There are twenty seven 
modes m used in this computation, indicating that the 
derived series solution is fast-convergent and numerically 
efficient. Fig. 2(b) illustrates the equipotential contour of 
the electrostatic field of the ACPW with the same 
parameters used in Fig. 2(a). It can be observed that the 
potential field is continuous across the slot apertures and 
is concentrated around the central strip. 

The normalized per-unit length capacitance C of the 
ACPW is obtained from the charge accumulations of a 
dielectric-wedge-backed, double-slotted conducting wedge 
with f0=0 and a= p, as illustrated in Fig. 1. C is then 
defined as (Q1+ Q2+ Q4+ Q5)/(VL), where L is the length 
of the wedge along the z-direction. Here, the charge 
accumulations Q3 and Q6 are zero because we assumed that 
the conducting strips of the ACPW have a zero thickness. 
Using the potential fields derived in the previous section, 
the charge accumulations of the ACPW are expressed as 
series form:  
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  (34) 
 
The computed, normalized per-unit length capacitance 

of the ACPW versus the width s of the central strip is 
depicted in Fig. 3 when the relative permittivity of the 
dielectric substrate (e2r) varies from 2.0 to 10.0. This figure 
shows that the capacitance increases as the strip width s 
or the value of e2r increases. There is also good agreement 
between the computation and simulation results, and 
relative errors between these results are approximately 
5%. CST EM STUDIO cannot calculate the capacitance 
directly. It computes total charge accumulations. The 
simulated capacitance was therefore computed using the 
equation C =Qtotal/(VL). Some discrepancies between the 
computation and simulation results can be attributed to 
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the fact that the CST EM simulation uses a three-
dimensional ACPW structure with a finite width, whereas 
the computation uses an ACPW with an infinite width. 
We simulated a finite structure that was sufficiently thick 
and long enough to compare the result using a mode-
matching technique. We also applied an open boundary 
condition on the Xmin and Zmin boundaries and an open-add 
boundary condition on other boundaries. Fig. 4 shows the 
capacitance behavior with respect to the asymmetry ratio 
w2/w1 of the ACPW for three different values of e2r. The 
slot asymmetry leads to a slight decrease in the capacitance, 
but the capacitance converges as the asymmetry ratio w2/w1 
exceeds 6.  

Fig. 5 illustrates the results of the characteristic impedance 
of the ACPW with different relative permittivities of the 
dielectric substrate (e2r=2.0, 5.0, or 10.0) versus the width s 
of the central strip. In a frequency-dependent analysis, the 

characteristic impedance of the CPW with coupled slots is 
usually defined as power-voltage ratio: 
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where V0 is the slot voltage and Pavg is the time-averaged 
power flow on the slot line. In a quasi-static analysis, 
however, the characteristic impedance of the ACPW is 
derived from the computed capacitance due to the difficulty 
encountered when calculating the time-averaged power 
in (35): 
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Here, c is the velocity of light in free space and Ca is the 

capacitance of the ACPW when the dielectric substrate is 

 
Fig. 3. Normalized per-unit length capacitance of an 

ACPW versus s when a =20.0 mm, w1=1.0 mm, 
w2=2.0 mm, e1r=e3r =e4r =1.0, and e2r=2.0, 5.0, or 
10.0 

 

 
Fig. 4. Normalized per-unit length capacitance of an 

ACPW versus w2/w1 when a =20.0 mm, s =2.0 mm, 
e1r=e3r =e4r =1.0, and e2r=2.0, 5.0, or 10.0 

 

Fig. 5. Characteristic impedance of an ACPW versus s 
when a=20.0 mm, w1=1.0 mm, w2=2.0 mm, e1r=e3r 
=e4r =1.0, and e2r=2.0, 5.0, or 10.0 

 

 
Fig. 6. Characteristic impedance of an ACPW versus w2/w1 

when a=20.0 mm, s=2.0 mm, e1r=e3r =e4r =1.0, and 
e2r=2.0, 5.0, or 10.0 
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air (e2r=1.0). 
As shown in the figure, an increase in the width s results 

in a decrease of the characteristic impedance for all 
material cases. The effect of the asymmetry ratio w2/w1 on 
the characteristic impedance can be found in Fig. 6. The 
characteristic impedance of the ACPW with w2/w1=10 
increased by almost 15% compared to the case of w2/w1=2. 

 
 

4. Conclusion 
 
In this article, a fast-convergent series solution for the 

electrostatic potential field of an ACPW is investigated 
based on the Mellin transform and a mode-matching 
method. The capacitance and characteristic impedance are 
analytically computed by the derived series, and the effects 
for the width of a signal line and slot asymmetry are 
discussed. The computed results demonstrate that our 
theoretical formulations are rigorous and numerically 
efficient for evaluating the quasi-static characteristics of 
ACPWs. Therefore, the proposed static solution is useful 
for analyses of various ACPWs. 
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