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Abstract – Wide-area monitoring of tree-related high impedance fault (THIF) efficiently contributes 
to increase reliability of large-scaled network, since the failure to early location of them may results in 
critical lines tripping and consequently large blackouts. In the first place, this wide-area monitoring of 
THIF requires managing the placement of sensors across large power grid network according to THIF 
detection objective. For this purpose, current paper presents a framework in which sensors are 
distributed according to a predetermined risk map. The proposed risk map determines the possibility of 
THIF occurrence on every branch in a power network, based on electrical conductivity of trees and 
their positions to power lines which extracted from spectral data. The obtained possibility value can be 
considered as a weight coefficient assigned to each branch in sensor placement problem. The next step 
after sensors deployment is to on-line monitor based on moving data window. In this on-line process, 
the received data window is evaluated for obtaining a correlation between low frequency and high 
frequency components of signal. If obtained correlation follows a specified pattern, received signal is 
considered as a THIF. Thereafter, if several faulted section candidates are found by deployed sensors, 
the most likely location is chosen from the list of candidates based on predetermined THIF risk map. 
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1. Introduction 
 
THE issue of high impedance faults has been one of the 

most challenging problems in power distribution systems. 
These kinds of faults which comprise about 10 percent of 
the distribution faults have current magnitude close to 
the load current level or even lower and therefor are not 
detectable by over-current protection devices [1-3]. This 
research is just focused on the HIF current that passes 
through live vegetation. It occurs when power line 
transiently come in contact with live trees. The reason 
for making this choice is that tree-power line contact is 
the major cause of power outages in the United States 
according to the Edison Electric Institute (Fig. 1). 

The earlier studies in the field of high impedance fault 
have considered various methods for HIFs detection. But 
the problem of these HIF detection methods was in using 
same detection/location techniques for all types of HIF. 
These detection methods have been proposed based on 
conventional HIF models which can’t represent the 
expected behavior of a THIFs. Following reasons justify 
why these methods are not applicable for THIF detection: 

 
1. Previous HIF detection methods are based on conventional 

models of HIF. Most of these models represent the 
behavior of arc [5-9]. While arc does not occur during 
initial cycles of THIF. An arc will occur when the 
moisture of tree’s bark is expulsed and ignition process 
is started. Electric arcs occur in the flame along the 
tree’s branch and this causes large fluctuations in the 
current waveform. As shown in Fig. 2, it takes about 20-
30 seconds for arcs to happen. 

2. One other feature of THIF that differentiates it from 
other HIFs, is the moisture expulsion from the outermost 
layer of bark in the form of steam which accompanied 
by a continuous audible whistling noise. During the 
expulsion of moisture, a considerable reduction from 
first peak is seen in the current RMS [4]. As shown in 
Fig. 1, it occurs before the arcs occurrence commenced. 
This reduction is not seen in current RMS of other HIFs. 
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Fig. 1. Power outages causes in the United States [4] 
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3. The high-frequency components of THIF current is 
generally much smaller than other types of HIF [4]. 

4. At the first cycles of THIF, tree acts as a linear resistor 
with low distortion. While conventional models represent 
nonlinear behavior of HIFs [10, 11]. 

5. The rate of growth of current is much faster in other 
types of HIFs than in THIF [12]. Although a flashover 
occurs too rapidly in the case of other HIFs like fallen 
conductor, it takes several tens of seconds for THIF 
current to develop to flashover. 

 
Considering the differences between various types of 

high impedance faults, it is important to separately address 
each type of HIF. In other words, there should be distinct 
criteria for detecting each type of HIF.  

In addition to the above differences, the other problem 
with previous detection methods is that about 40 percent of 
all feature extraction methods for the high impedance faults 
have been wavelet-based techniques [13-16]. When a 
signal transfers to a new domain such as wavelet domain, 
some characteristics of the original signal will be lost and 
cannot be effectively evaluated. This is due to the fact that 
the decomposed functions of a signal in wavelet domain 
are not of the same length as the original signal. For this 

reason, varying frequency in time may not be preserved. 
That is why the data may be lost in the wavelet domain. 
These techniques (Wavelet-based technique) have low 
ability for feature extraction, and are so dependent on types 
of mother wavelet. While a technique like empirical mode 
decomposition (EMD) does not have such problems and 
keeps signals in their own domain [17, 18]. Therefore, 
EMD is used as an applicable tool for feature extraction of 
tree-related high impedance faults in this paper. The basis 
of the empirical mode decomposition is evaluation of local 
oscillations in the signal. This method studies the trend of 
variations in the signal between two sequential local 
extrema so that the details and features of original signal 
are extracted.  

Therefore, for all the reasons mentioned above, the aim 
of this paper is first to study a new method for detecting 
THIF. 

Beside feature extraction problem, the more serious 
issue is low efficiency of available HIF location methods 
in facing with environmental noise [19]. Given the 
importance of mentioned issue, the main purpose of current 
paper is to improve the efficiency of detecting and locating 
tree-related HIF especially in large-scale MV networks. To 
achieve this goal, a series of experiments and preliminary 
studies are done in this paper in order to reach to an 
accurate tree-related HIF mapping. In situations where 
there is the possibility of sending wrong tree-related HIF 
signal, the offline mapping system of tree-related HIF helps 
to increase the accuracy of detection / location techniques. 
The findings of this study can be effective in Wide-area 
monitoring of high impedance faults. The most obvious 
advantage of suggested scheme is proposing the use of 
satellite imagery in mapping which is economically 
advantageous in large-scale. This mapping provides a 
cost-effective, useful tool for THIF sensors placement 
and improving decision making processes to organize early 
THIF warning. Using these maps is helpful in assessing the 
spatiotemporal distribution of THIF risk using spectral data. 

The possibility of electrical arcs occurrence near 
vegetation and electrical current passing through them 
found to increase as electrical conductivity of vegetation 
increases. At very low electrical conductivity levels, 
vegetation acts as an electrical insulator and does not 
conduct enough electrical current to THIF occurrence. 
When vegetation gets too close to medium voltage or high 
voltage power lines, it is possible that a transient electrical 
leakage current occurs and vegetation provides a path for 
low electrical current to flow. Heating during electrical 
current leakage causes carbonization of vegetation’s tissues. 
The carbonized path results in increase in electrical 
conductivity of vegetation and consequently provides 
lower resistance to the electrical leakage current. As time 
go on, it becomes more possible that a flashover occurs 
[20].  

Different tree species coming in contact with power lines 
show widely varying THIF risk [20]. So determination of 

 

(a) The case study of Manna Gum tree [4] 

 

(b) The case study of Golden Wattle tree [4] 

Fig. 2. Current RMS of a THIF 
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species around power lines which are the most likely to 
conduct electricity is important for the spatiotemporal 
distribution of THIF risk. The common techniques to 
estimate electrical conductivity of vegetation are to make 
field surveys and collect samples that are so costly and 
time consuming, and it is difficult to extrapolate them over 
space and time. This is why the fitting models to estimate 
vegetation’s electrical conductivity using spectral data that 
could be more easily and quickly measured, is considered a 
useful tool for hazard management. This type of estimation 
could be temporally extended and spatially generalized.  

The electrical conductivity of vegetation can be 
determined using remote sensing methods as its variations 
affect the vegetation’s spectral signature. To this end, in 
this study, a mathematical model is fitted using spectral 
indices and field estimations of electrical conductivity 
values. This study is the first attempt to monitor electrical 
conductivity of live trees in the power lines’ corridors 
using satellite imagery.  

 
 
2. Off-line Mapping of Tree-related HIF in MV 

Networks  
 
Since power grid become more widespread, conventional 

surveys of power line corridor using ground/aerial patrol 
inspection are so costly and time consuming. This is why 
the utilization of satellite images due to wide area coverage, 
frequent overhead passes, the ability to view areas with 
restricted physical access, and potential lower cost from 
processing a large area at one time in an automated 
workflow, is considered a useful tool for risk mapping in 
current paper. This proposed risk mapping determines the 
coordinates of THIF danger zones based on electrical 
conductivity of trees and their proximity to the power lines. 
The novelty of this section is recommending electrical 
conductivity of hazardous trees (trees within a close 
enough proximity to the power line) as an indicator of 
THIF risk. To this end, visible and near infrared spectral 
bands of Sentinel-II are analyzed in order to study the 
relationship of spectral data and electrical conductivity 
component of trees’ crown. 

 
2.1 Trees’ location map 

 
The study area is in one part of the Heydareh rural road 

located in Hamedan, Iran (Fig. 3). 
To report hazardous positions of trees, all objects of 

image except trees should be excluded in order to obtain 
accurate map of trees’ location. Then after, trees in a close 
enough proximity to the power lines are determined by 
integrating obtained map and power grid map. 

Wavelet transform is used to remove unnecessary 
objects from image. This paper apply Daubechies-10 
wavelet transform which is found superior to all other 
approaches in decomposing image. As low decomposition 

levels result in poor spatial quality, eighth level wavelet 
decomposition is applied to image to achieve high accuracy. 
In order to reduce the computational load, panchromatic 
image of study area with the color number of 15 is 
decomposed. The reconstructed version of the second level 
component of decomposed image show trees’ crowns that 
are completely distinct from other features in original 
image (Fig. 4). 

 
2.2 Trees’ electrical conductivity map 

 
The sap content passing through vascular structure plays 

the role of electrical conductor [20], and its electrical 
conductivity should therefore be measured. According to 
this point, the leaf xylem content alone was sufficient to 
consider for measuring tree’s electrical conductivity. 

The field estimation was conducted in December 2016 
in which the sampling was consisted of random collecting 
the fresh leaves of studied poplar trees. The distribution of 
these sampling points is plotted in Fig. 5. Samples were 
collected between 11 A.M. and 2 P.M. and transported in 
sealed bags to the laboratory. For measuring the electrical 
conductivity of samples, 0.1 g of each sample was cut and 

 

Fig. 3. Study area 
 

 

Fig. 4. Obtained white points representing trees’ crown in 
Fig. 3 
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taken into tubes with 10 ml of double distilled water [22]. 
The tubes were kept at 40 °C for 30 minute in Bain Marie 
and then their electrical conductivity was measured by EC 
meter. The procedures of performed experimental tests are 
documented in Fig. 6.  

In order to measuring EC, 25 trees were selected and 20 
leave samples were taken from each tree. Thereafter, the 
electrical conductivity values of 20 samples related to each 
tree were measured in laboratory, and their average value 

was calculated. Fig. 7 summarizes the results from field 
investigation and laboratory measurements of 25 live 
poplar trees. 

As mentioned previously, what could be effective on 
electrical conductivity of vegetation is the electrolyte 
content transported in Xylems [20, 21]. As shown in Fig. 8, 
there is a linear relationship between electrical conductivity 
and salt content of an electrolyte solution. Furthermore, 
experiments have also demonstrated the observance of 
Ohm’s law for electrolyte solutions even at the lowest 
intensities [23]. Therefore, according to the above point 
and inasmuch as the electrical conductivity of leaf water 
content approximately represents the level of electrolytic 
in tree’s vascular water and consequently represents the 
electrical conductivity of the whole tree, there would be a 
linear relationship between electrical conductivity of leaf 
water content with the HIF current amplitude. 

To estimate electrical conductivity of trees from satellite 
image, the spectral indices were calculated using data set of 
cloud-free Sentinel-II image at a spatial resolution of 10 m 
that was composed of four spectral bands of 490 nm (band 
1-blue), 560 nm (band 2-green), 665 nm (band 3-red) and 
842 nm (band 4-infrared). This image was acquired in 

Fig. 5. Location of sampling points 
 

 

(a) Weighting one piece of leaf (0.1 g) and crushing it 

 

(b) Providing 10 ml of double distilled water and adding it 
to crushed leaf 

 

(c) Taking obtained solutions into tubes and keeping them 
at 40 °C for 30 minute in Bain Marie 

Fig. 6. Electrical conductivity measurement of samples

 

Fig. 7. EC values of 25 live poplar trees 
 

 

Fig. 8. Linear relationship between electrical conductivity 
and salt content of an electrolyte 
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December 2016. Fig. 9 shows the false color composite 
432 (Infrared-Red-Green) of study area. 

The exact coordinates of each sampling point were 
recorded using the global positioning system (GPS) and 
their corresponding reflectance data were extracted from 
false color composite image for each spectral band (Fig. 
10). 

Different combinations of reflectance data corresponding 
to each wavelength were analyzed to look for a relationship 
between the electrical conductivity values of samples and 
corresponding values of extracted spectral index, and the 
best of them with highest coefficient of determination (R2) 
was selected. The proposed spectral index which extracted 
from the full spectral bands is defined as: 

 

     4 3 2 1x R R R R     (1) 

 
where R1 to R4 are the reflectance corresponding to the 
wavelengths of 490, 560, 665 and 842 nm, respectively. 

Regression analysis was then used to evaluate the 
correlation between electrical conductivity values and 
extracted spectral variable. The strength of correlation 
between measured and predicted variables was indicated 
using the R2 value. 

The obtained equation to estimate electrical conductivity 
(μS/cm) of live trees using spectral indices is as follows. 

 nx  is spectral reflectance value related to band nth. The 

coefficients of this regression equation are given in Table 1. 
 

     1 1 1 2 2 2 3 3 3EC a Sin b x c a Sin b x c a Sin b x c       (2) 

   4 3 2 1x x x x x      (3) 

 
The model fitted for electrical conductivity is presented 

in Fig. 11 with the R2=0.4409. According to this coefficient 
of determination, a desired level of accuracy was achieved 
by this fitting. 

According to above findings, the coordinates of THIF 
danger zones based on electrical conductivity of trees 
and their proximity to the power lines could be easily 
determined. The higher the electrical conductivity and 
the lower the distance to power lines, the more hazardous a 
vegetation is. 

 
 

3. Maximum Amplitude Determination  
of High Frequency Components due to  

Tree-related HIF 
 
Thereafter the hazardous tree is identified, the maximum 

amplitude of high frequency component and fundamental 
part of THIFs that could be generated by this tree is 
estimated as follow. Being aware of the contribution of 
each hazardous tree to cause THIF before it happens, could 
be so helpful for monitoring target.  

 

Fig. 9. False color composite (432) of study area 
 

 

Fig. 10. The reflectance data corresponding to each spectral
band 

Table. 1. Coefficients of regression equation 

Coefficient Value Coefficient Value 

1a
 3210 3b  0.000163 

2a
 3097 1c  1.486 

3a
 15.21 2c  -1.665 

1b  9.996e-06 3c  -0.3016 

2b
 1.032e-05   

 

 

Fig. 11. The model fitted for electrical conductivity with 
the R2 = 0.4409 
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Table 2. Max amplitude of THIF current (A) 

Maximum THIF current  Tree  
species 

Electrical conductivity 
(µs/cm) FEM  

results 
Experimental  

results 
Walnut 231.7 0.5299 0.5098 
Poplar 218.1 0.4988 0.4521 

 
Table 3. Max amplitude of THIF current 

Species 

The level of 
fundamental 
component 

(A) 

The level of high 
frequency 

components (A) 

Ratio of high frequency 
components’ pulses to 

fundamental component 
(%) 

Walnut 0.4706 0.0424 9.00 
Poplar 0.4422 0.0245 5.54 

Ash 0.3182 0.0329 10.33 

 
3.1 Maximum amplitude determination of fault 

current 
 
The electrical conductivity of tree is applied to finite 

element analysis as input data and the maximum amplitude 
of tree-related HIF is calculated. 

For finite element analysis, tree trunk structure is 
assumed as a truncated cones and boundary conditions are 
specified as voltage and current density of conductors and 
the ground voltage [20]. 

For assessing the validity of the FEM results in 
estimating maximum amplitude of tree-related HIF, the 
results of series of electrical conductivity measurements 
are employed to finite element model of tree and the 
maximum amplitude of tree-related high impedance fault is 
calculated. Then the obtained values from simulation were 
compared with those obtained from experiments in a real 
medium voltage network and the comparison results are 
shown in Table 2. As shown in Table 2, there is a relatively 
small absolute difference between measured and FEM 
values. 

 
3.2 Maximum amplitude determination of high 

frequency component 
 
Empirical mode decomposition technique is used to 

decompose original tree-related HIF to fundamental 
component and high frequency components. By applying 
the empirical mode decomposition method [17, 18], 
original tree-related HIF signals were decomposed to n 
IMFs and one residual. By merging IMFs of first to (n-1)th 
into one signal, the high frequency components were 
obtained. And fundamental component was achieved by 
merging nth IMF and residual part. The decomposition 
results for tree species are shown in Fig. 12. 

Table 3 shows comparison between the levels of 
fundamental component to its high frequency components 
of tree-related HIF signal for three understudied species. 

Using FEM analysis and according to the ratio of high 
frequency components’ pulses to fundamental component, 

the estimated maximum amplitude for high frequency 
components of tree-related HIFs was calculated and given 
in Table 4. 

Table 4. The estimated maximum amplitude for high 
frequency components 

The level of high frequency components (A) 
Species 

FEM results Experimental results 
Walnut 0.0476 0.0424 
Poplar 0.0276 0.0245 

 

 
(a) Walnut tree 

 
(b) Poplar tree 

 
(c) Ash tree 

Fig. 12. Fundamental component and high frequency 
components of tested trees 
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4. Tree-related High Impedance Fault Detection 
 
High-frequency information contained within signal is 

what can distinguish tree-related HIFs from other similar 
events. So, in order to characterize tree-related HIFs, their 
high-frequency information should be evaluated to find a 
feature. For this purpose, high-frequency information 
contained within measured HIF signals were extracted 
employing empirical mode decomposition. Fig. 13 show 
the first and second IMFs for poplar, walnut, and ash tree. 
As evident in these figures, none of the functions have the 
same distribution. Pulse peak values are not also the 
same and there is no apparent relationship between IMFs. 
In other words, data related to IMFs are not actually 
distributed according to a given distribution, and had a lot 
of outliers that were far removed from the mean. Therefore, 
finding a common feature between them was not possible 
at this stage and other tools had to be employed. That is 
why quantile regression method [24] was chosen to find a 
unique feature for tree-related HIF. Indeed, the quantile 
regression method was employed to predict expected 
behavior of a tree-related HIF. This method is a powerful 
tool for real-time detection of abnormality in that it could 
capture the extreme values in data distribution of each IMF.  

Q-quantiles are values that divide the group of discrete 
energy coefficients into q subsets of same sizes so that 
there are q−1 of the q-quantiles. The q-quantiles are the 
results of applying the inverse function of the cumulative 

distribution function to the values of 
1 2 -1

, , ,
q

L
q q q

 
 
 

. 

 

 
(a) First IMF 

 
(b) Second IMF 

Fig. 13. Distribution of intrinsic mode functions  

In order to extract the feature contained within THIF 
currents, the relation between high frequency components 
and fundamental part of these signals have been evaluated 
in this paper. To find the relation between high frequency 
components and fundamental part of THIFs, specific trend 
between quantiles of them for different samples. According 
to the results of conducted evaluations, the following 
algorithm for tree-related HIF detection was extracted: 
1. Measured THIF signal is decomposed according to the 

empirical mode decomposition algorithm [17, 18]. 
2. Intrinsic mode functions of first to nth are extracted. 
3. The high frequency components coefficients of THIF 

are calculated by merging IMFs of first to (n-1)th and 
considered as a population. 

4. Quantiles of each population are calculated according to 
the flowchart of Fig. 14. 

5. The set of intervals for calculated quantiles is chosen. 
6. The quantiles of the high frequency components 

distribution are plotted against the same quantiles of 
fundamental part distribution. 

7. Linear regression between the quantiles is estimated. 
8. The slope of estimated lines is calculated. 
9. If the following conditions are met, the captured signal 

belongs to THIF: 
 The quantiles-quantiles plot is symmetric, with deviations 

from straight line occurring in both the left and right 
tails 

 The slope of the linear regression between the quantiles 
is s 0.01 with error margin of 0.009. 

 Most of the points follow a linear pattern. 
 There are a few outliers located at the extremes of the 

distribution and no outlier in the center of it. 

 
Fig. 14. Algorithm of Quantiles calculation 
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 The outliers depart upward from the straight line as you 
follow the quantiles to right side. 

 The outliers depart downward from the straight line as 
you follow the quantiles to left side. 

 
The results of applying proposed algorithm to different 

THIF signals are summarized as a series of scatterplots 
created by plotting two sets of quantiles related to high 
frequency components and fundamental part against one 
another (Fig. 15). These quantiles are the points in data 
below which a certain proportion of data fall and therefore 
can be utilized as an efficient index in detection targets. 
Superimposed on the plots are the lines joining the first and 
third quartiles of each distribution. These are the robust 
linear fits of the order statistics of the two distribution of 

high frequency components and fundamental part. These 
lines are extrapolated out to the ends of the sets and 
represent the specific trend between high frequency 
components and fundamental part. So, the slope of these 
lines indicates a specific feature of THIF. 

As evident in scatterplots of Fig. 15, most of the data 
follow a linear pattern and is distributed on the center with 
two tails of data extending out to the left and right sides. 
However, a few outliers being evident at the extremes of 
the range reveal that some data of high frequency 
components and fundamental part are not distributed in the 
same manner. Some points depart upward from the straight 
line as you follow the quantiles to right and some depart 
downward as you follow the quantiles to left. The straight 
line illustrates where the points would fall if the high 
frequency components dataset were perfectly distributed 
the same as fundamental part dataset. The point’s trend 
upward demonstrates that a few number of high frequency 
components quantiles are much greater than the fundamental 
part quantiles. And a contrasting phenomenon can be seen in 
left side in which the point’s trend downward demonstrates 
that a few number of high frequency components quantiles 
are much lower than the fundamental part quantiles. 

As shown in Fig. 15 and given that all the conditions 
stated in the algorithm have been met for all samples, THIF 
was accurately detected. 

 
 

5. Conclusion 
 
Vegetation coming into contact with overhead bare 

power lines can result in THIF that in turn can lead to 
property damage, electrical shock, power lines outage and 
in worst case widespread blackout. The main effective 
factor in such fault is electrical conductivity of vegetation’s 
sap content which plays the role of an electrical conductor 
between the contact point and the ground. Therefore, in 
current paper, the electrical conductivity of vegetation’s 
sap content was considered as a key indicator of THIF 
hazard. 

Traditional methods used for vegetation monitoring in 
power lines corridors include time consuming and 
expensive field surveys which are not applicable in wide-
area scale. Remote sensing techniques represent a fast cost-
effective alternative approach to this kind of monitoring. 
Thus this paper proposed a method for estimating 
vegetation’s electrical conductivity using spectral data 
derived from satellite imagery to help THIF risk 
assessments. For this purpose, the correlation between 
spectral data and field measurements of electrical 
conductivity of trees was modeled using regression 
analysis. Based on the obtained correlation function and 
FEM, the THIF current was estimated. 

The findings of this paper could be applied as a mean for 
wide-area mapping of vegetation’s electrical conductivity 
in power lines corridors at regular intervals with acceptable 

 
(a) Walnut tree 

 
(b) Poplar tree 

 
(c) Ash tree 

Fig. 15. The quantile-quantile plots and estimated lines 
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accuracy. This cost-effective method provides a way to 
map THIF danger in power networks.  

In summary, the original contributions of current 
research include 1) Using empirical mode decomposition 
in pre-processing of THIFs signals and extracting their 
main components, 2) Recommending quantile regression 
for the feature definition of THIF, 3) wide-area monitoring 

the electrical conductivity of live trees in the power 
lines’ corridors using remote sensing, 4) Recommending 
a mathematical model for correlation between electrical 
conductivity of live trees and spectral indices, 5) 
Presenting an indicator of THIF hazard. 6) Considering the 
proposed THIF hazard indicator as a weight-coefficient in 
sensors’ placement problem. 

 
 

Appendix - Experimental Results of THIF 
 
Several HIF experiments were performed on different 

species of trees under 20 kV power lines in Hamedan/Iran 
(Fig. 16). These species included Ash, Poplar and Walnut. 
The fault’s current waveform of each species was captured 
by using a power analyzer that provides a high sampling 
rate of 1024 samples/period. Stored data were down loaded 
by laptop. The obtained results from THIF tests of different 
species on MV power lines are documented in Fig. 17. 
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