그림 1. 이중 CNN 기반 음향 이벤트 인식 알고리즘의 개략도 Fig. 1. Schematic diagram of dual CNN based sound event detection algorithm
그림 2. 다층 퍼셉트론 모델 블록선도 Fig. 2. Block diagram of multi-layer perceptron model
그림 3. Ground truth에 대한 시스템 출력의 시각화 Fig. 3. Visualization of system output to ground truth
표 1. 음향 이벤트 클래스 Table 1. Sound event classes
표 2. 녹음 신호 규격 Table 2. Recording signal specifications
표 3. 음향 이벤트 메타데이터 구성 예 Table 3. Examples of sound event metadata
표 4. 문맥 사이즈와 홉 사이즈 변경에 따른 음향 이벤트 인식 결과 Table 4. Acoustic event detection results according to the context and hop size
표 5. 실내 환경에서 음향 이벤트 별 상세 인식 결과 Table 5. Detailed results of detection per sound event in an indoor environment
표 6. 실외 환경에서 음향 이벤트 별 상세 인식 결과 Table 6. Detailed results of detection per sound event in an outdoor environment
표 7. 음향 이벤트 인식 시스템 성능 측정 결과 Table 7. Performance test for sound event detection systems
참고문헌
- A. Temko et al., "CLEAR evaluation of acoustic event detection and classification systems," Lecture Notes in Computer Science, vol.4122, pp.311-322, 2007.
- D. Stowell et al., "Detection and classification of acoustic scenes and events," IEEE Transactions on Multimedia, vol.17, no.10, pp.1733-1746, 2015. https://doi.org/10.1109/TMM.2015.2428998
- DCASE Community, http://dcase.community/community_info
- J. Portelo et al., "Non-Speech Audio Event Detection," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009.
- DCASE 2016 Task3 Sound event detection in real life audio, http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-real-life-audio
- DCASE 2017 Task3 Sound event detection in real life audio, http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-sound-event-detection-in-real-life-audio
- A. Mesaros et al., "DCASE 2017 Challenge Setup: Tasks, Datasets and Baseline System," Detection and Classification of Acoustic Scenes and Events (DCASE), 2017.
- A. Mesaros, T. Heittola, and T. Virtanen, "TUT Database for Acoustic Scene Classification and Sound Event Detection," 24th European Signal Processing Conference (EUSIPCO), pp. 1128-1132, 2016.
- S. Adavanne, G. Parascandolo, P. Pertila, T. Heittola, and T. Virtanen, "Sound event detection in multichannel audio using spatial and harmonic features," Detection and Classification of Acoustic Scenes and Events (DCASE), 2016.
- I. Jeong, S. Lee, Y. Han, and K. Lee, "Audio event detection using multiple- input convolutional neural network," Detection and Classification of Acoustic Scenes and Events (DCASE), 2017.
- S. Adavanne, and T. Virtanen, "A report on sound event detection with different binaural features," Detection and Classification of Acoustic Scenes and Events (DCASE), 2017.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," IEEE Conference on Computer Vision and Patter Recognition (CVPR), 2016.
- Large Scale Visual Recognition Challenge (LSVRC), http://image-net.org/challenges/LSVRC/ImageNet, http://www.image-net.org/
- ImageNet, http://www.image-net.org/
- Y. Jung, S. Seo, W. Lim, and H. Kim, "Design and construction of Acoustic Database for developing Sound Event Detection technique," IEIE Summer General Conference, June, 2018
- D. P. Kingma, and J. Ba, "Adam: A method for stochastic optimization," Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2014.
- TensorFlow, https://www.tensorflow.org/
- Keras, https://keras.io/
- Metrics For sound event detection tasks, http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/metrics