DOI QR코드

DOI QR Code

Performance Analysis of Hydrogen Based Hybrid System Using HOMER - a Case Study in South Korea

수소기반 신재생에너지 복합발전 시스템의 지역별 운영성과 분석 - HOMER를 활용한 사례 연구

  • LEE, MYOUNG-WON (KU-KIST Green School (Graduate School of Energy and Environment), Korea University) ;
  • SON, MINHEE (KU-KIST Green School (Graduate School of Energy and Environment), Korea University) ;
  • KIM, KYUNG NAM (KU-KIST Green School (Graduate School of Energy and Environment), Korea University)
  • 이명원 (고려대학교 그린스쿨대학원) ;
  • 손민희 (고려대학교 그린스쿨대학원) ;
  • 김경남 (고려대학교 그린스쿨대학원)
  • Received : 2018.11.01
  • Accepted : 2018.12.30
  • Published : 2018.12.30

Abstract

This study focuses on the performance of hydrogen energy based hybrid system in terms of system reliability of electricity generation. With this aim to evaluate the off-grid system of photovoltaic (PV), wind turbine, electrolyzer, fuelcell, $H_2$ tank and storage batteries, 14 different sites in South Korea are simulated using HOMER. Performance analysis includes simulation on the different sites, verification of operational behaviors on regional and seasonal basis, and comparison among a control group. The result shows that the generation performance of hydrogen powered fuelcell is greatly affected by geographical change rather than seasonal effect. In addition, as the latitude of the hybrid systems location decrease, renewable power output and penetration ratio (%) increase under constant electrical load. Therefore, the hydrogen based hybrid system creates the stability of electricity generation, which best suits in the southern part of South Korea.

Keywords

SSONB2_2018_v29n6_606_f0001.png 이미지

Fig. 1. Schematic of the PV-wind-fuelcell-battery hybrid system

SSONB2_2018_v29n6_606_f0002.png 이미지

Fig. 2. Flowchart of performance analysis on hybrid system operation

SSONB2_2018_v29n6_606_f0003.png 이미지

Fig. 3. Geographical position of the considered locations in South Korea

SSONB2_2018_v29n6_606_f0004.png 이미지

Fig. 4. Monthly solar radiation and wind speed by regions

SSONB2_2018_v29n6_606_f0005.png 이미지

Fig. 5. Daily profile of system component outputs in Gangneung

SSONB2_2018_v29n6_606_f0006.png 이미지

Fig. 6. Renewable penetration and power output correlations of each system

SSONB2_2018_v29n6_606_f0007.png 이미지

Fig. 7. Monthly system performance in (a) Daegwallyeong and (b) Hueksando

Table 1. Classification of each generation system

SSONB2_2018_v29n6_606_t0001.png 이미지

Table 2. List of the 14 observation stations

SSONB2_2018_v29n6_606_t0002.png 이미지

Table 3. One variable summary on annual hybrid system outputs for Gangneung

SSONB2_2018_v29n6_606_t0003.png 이미지

Table 4. Hybrid system outputs for a complete year by regions

SSONB2_2018_v29n6_606_t0004.png 이미지

Table 5. Primary system outputs for a complete year by regions

SSONB2_2018_v29n6_606_t0005.png 이미지

Table 6. Secondary system outputs for a complete year by regions

SSONB2_2018_v29n6_606_t0006.png 이미지

Table 7. Hybrid system outputs for a complete year by regions

SSONB2_2018_v29n6_606_t0007.png 이미지

Table 8. Availability of configured modalities of each system by latitude

SSONB2_2018_v29n6_606_t0008.png 이미지

References

  1. J. H. Park, "Master Plan for Energy Independence of Islands with small population", Gyeongnam Development Institute, Korea, 2015, pp. 1-12.
  2. S. B. Silva, M. M. Severino, and M. A. G. De Oliveira, "A stand-alone hybrid photovoltaic, fuel cell and battery system : A case study of Tocantins, Brazil", Renewable Energy, Vol. 57, 2013, pp. 384-389. https://doi.org/10.1016/j.renene.2013.02.004
  3. A. Shirazi, S. Pintaldi, S. D. White, G. L. Morrison, G. Rosengarten, and R. A. Taylor, "Solar-assisted absorption air-conditioning systems in buildings : control strategies and operational modes", Appl. Therm. Eng., Vol. 92, 2015, pp. 246-260.
  4. A. H. Mamaghani, S. A. A. Escandon, B. Najafi, A. Shirazi, and F. Rinaldi, "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia", Renewable Energy, Vol. 97, 2016, pp. 293-305. https://doi.org/10.1016/j.renene.2016.05.086
  5. B. Najafi, A. H. Mamaghani, F. Rinaldi, and A. Casalegno, "Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system : operational strategies", Appl. Energy, Vol. 147, 2015, pp. 582-592. https://doi.org/10.1016/j.apenergy.2015.03.043
  6. M. H. Ashourian, S. M. Cherati, A. A. M. Zin, N. Niknam, A. S. Mokhtar, and M. Anwari, "Optimal green energy management for island resorts in Malaysia", Renewable Energy, Vol. 51, 2013, pp. 36-45. https://doi.org/10.1016/j.renene.2012.08.056
  7. O. Hafez and K. Bhattacharya, "Optimal planning and design of a renewable energy based supply system for microgrids", Renewable Energy, Vol. 45, 2012, pp. 7-15. https://doi.org/10.1016/j.renene.2012.01.087
  8. E. D. Giannoulis and D. A. Haralambopoulos, "Distributed generation in an isolated grid : methodology of case study for Lesvose Greece", Appl. Energy, Vol. 88, 2011, pp. 2530-2540. https://doi.org/10.1016/j.apenergy.2011.01.046
  9. A. B. Kanase-Patil, R. P. Saini, and M. P. Sharma, "Integrated renewable energy systems for off grid rural electrification of remote area", Renewable Energy, Vol. 35, 2010, pp. 1342-1349. https://doi.org/10.1016/j.renene.2009.10.005
  10. R. K. Akikur, R. Saidur, H. W. Ping, and K. R. Ullah, "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification : a review", Renew. Sustain. Energy Rev., Vol. 27, 2013, pp. 738-752. https://doi.org/10.1016/j.rser.2013.06.043
  11. KEA, "New and Renewable Energy", Korea Energy Agency, Korea, 2016.
  12. S. M. Shaahid and M. A. Elhadidy, "Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic+diesel) power systems", Int. J. Sus. Energy, Vol. 24, No. 3, 2005, pp. 155-166. https://doi.org/10.1080/14786450500292188
  13. L. C. G. Valente and S. C. A. De Almeida, "Economic analysis of a diesel/photovoltaic hybrid system for decentralized power generation in northern Brazil", Energy, Vol. 23, 1998, pp. 317-323. https://doi.org/10.1016/S0360-5442(97)00094-7
  14. G. K. Singh, "Solar power generation by PV (photovoltaic) technology : a review", Energy, Vol. 53, 2013, pp. 1-13. https://doi.org/10.1016/j.energy.2013.02.057
  15. E. I. Zoulias and N. Lymberopoulos, "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems", Renewable Energy, Vol. 32, No. 4, 2007, pp. 680-696. https://doi.org/10.1016/j.renene.2006.02.005
  16. M. J. Khan and M. T. Iqbal, "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland", Renewable Energy, Vol. 30, No. 6, 2005, pp. 835-854. https://doi.org/10.1016/j.renene.2004.09.001
  17. E. Bilgen, "Domestic hydrogen production using renewable energy", Solar Energy, Vol. 77, 2004, pp. 47-55. https://doi.org/10.1016/j.solener.2004.03.012
  18. I. B. Askari, L. B. Askari, M. M. Kaykhah, and H. B Askari, "Optimisation and techno-economic feasibility analysis of hybrid (photovoltaic/wind/fuel cell) energy systems in Kerman, Iran ; considering the effects of electrical load and energy storage technology", Int. J. Sus. Energy, Vol. 33, No. 3, 2014, pp. 635-649. https://doi.org/10.1080/14786451.2013.769991
  19. O. H. Mohammed, Y. Amirat, M. Benbouzid, and A. A. Elbaset, "Optimal design of a PV/fuel cell hybrid power system for the city of Brest in France", Int. Conf. Green Energy, 2014, pp. 119-123.
  20. A. Khosravi, R. N. N. Koury, L. Machado, and J. J. G. Pabon, "Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system", Energy, Vol. 148, 2018, pp. 1087-1102. https://doi.org/10.1016/j.energy.2018.02.008
  21. S. J. Park, Y. Li, Y. S. Choi, and K. S. Lee, "Optimization of Residential Photovoltaic-Fuel Cell Hybrid System Using HOMER", The Transaction of the Korean Inst. Electrical Engineers, Vol. 59, No. 1, 2010, pp. 129-133.
  22. S. H. Yang, C. J, Boo, and H. C. Kim, "Optimization of Stand-Alone Hybrid Power Systems Using HOMER Program", Journal of the Korean Solar Energy Society, Vol. 32, No. 2, 2012, pp. 11-18. https://doi.org/10.7836/kses.2012.32.2.011
  23. E. Y. Ko, J. H. Baek, T. H. Kang, D. H. Han, and S. H. Cho, "Determining the optimal capacities of distributed generators installed in a stand-alone microgrid power system", The Transaction of the Korean Inst. Electrical Engineers, Vol. 65, No. 2, 2016, pp. 239-246. https://doi.org/10.5370/KIEE.2016.65.2.239
  24. J. H. Park, S. H. Han, and J. H. Choi, "Energy Power Source Design for Off-Grid Using HOMER Program", Power Electronics Annual Conference, 2016, pp. 457-458.
  25. L. M. Halabi, S, Mekhilef, L. Olatomiwa, and J. Hazelton, "Performance analysis of hybrid PV/diesel/battery system using HOMER : A case study Sabah, Malaysia", Energy Conversion and Management, Vol. 144, 2017, pp. 322-339. https://doi.org/10.1016/j.enconman.2017.04.070
  26. Jeju Center for Disaster and Safety Management, "Geography of South Korea", Jeju Center for Disaster and Safety Management, Korea, 2018, retrieved from http://bangjae.jeju119.go.kr/related/history/environment/geography.htm.
  27. KOSIS, "Average Household Electricity Consumption (kWh) per Day", Korean Statistical Information Service, Korea, 2015, retrieved from http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01&statId=1997037&themaId=G#SelectStatsBoxDiv.
  28. KMA, "Climatological normals of Korea (1981-2010)", Korea Meteorological Administration, Korea, 2011.