Abstract
The modern industry requires the precision machining as well as the high productivity. The machine tool structure should be evaluated in aspects such as durability, static stability, precision rate and the dynamic stability which is one of the most critical characteristics in determining the magnitude of vibrations. In this study, the dynamic properties of a pipe cutting machine were investigated to analyze the structural vibrations of the machine, and further to improve the structural stability and precision machining. Frequency response test and computer simulation have been utilized for the analysis and the design alterations. And the result shows that proposed design alterations can reduce the vibrations of the machine substantially.