Fig. 1. Process of eye blink artifact removal from EEG. 그림 1. EEG 신호의 눈 깜빡임 잡파 제거 처리 과정
Fig. 2. Area of blink artifact on EEG signal. 그림 2. 뇌파 신호상 눈 깜빡임 잡파 영역
Fig. 3. Location of Muse sensor electrodes on 10-20 system. 그림 3. Muse 센서 10-20 system 전극 위치
Fig. 4. Comparison artifact removal methods. EEG raw signal filtered with bandpass filter(top), IC removal method(middle), The proposed method(bottom). 그림 4. 잡파 제거 결과 비교. 대역 통과 필터 적용 뇌파 신호(위), 기존 독립성분제거 방법(중간), 제안한 방법(아래)
Fig. 5. Comparison of coherence values between EEG signal and EEG signal before and after algorithm improvement. 그림 5. 개선 전, 후 잡파 제거 알고리즘 결과물과 뇌파 신호 사이의 일관성 수치 비교
Table 1. Quantitative numerical comparison of artifact removal algorithm 표 1. 잡파 제거 알고리즘의 정량적 수치 비교
참고문헌
- A. Jalilifard, E. B. Pizzolato and M. K. Islam, "Emotion classification using single-channel scalp-EEG recording," in Proc. of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.845-849, 2016. DOI:10.1109/EMBC.2016.7590833
- W. Zheng, "Multichannel EEG-Based Emotion Recognition via Group Sparse Canonical Correlation Analysis," IEEE Trans. Cogn. Develop. Syst, Vol.9, No.3, pp.281-290, 2017. DOI:10.1109/TCDS.2016.2587290
- M. Li and B.L. Lu, "Emotion classification based on gamma-band EEG," in Proc. of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1223-1226, 2009. DOI:10.1109/IEMBS.2009.5334139
- B. Abibullaev, "Learning suite of kernel feature spaces enhances SMR-based EEG-BCI classification," in Proc. of the 2017 5th International Winter Conference on Brain-Computer Interface (BCI), pp.55-59, 2017. DOI:10.1109/IWW-BCI.2017.7858158
- M. Z. Ilyas, P. Saad, M.I. Ahmad and A. R. I. Ghani, "Classification of EEG signals for brain-computer interface applications: Performance comparison," in Proc. of the 2016 International Conference on Robotics, Automation and Sciences (ICORAS), pp.1-4, 2016. DOI:10.1109/ICORAS.2016.7872610
- P. Tan, W.S. and L. Yu, "Applying Extreme Learning Machine to classification of EEG BCI," in Proc. of the 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp.228-232, 2016. DOI:10.1109/CYBER.2016.7574827
- M. Z. Ahmad, M. Saeed, S. Saleem and A. M. Kamboh, "Seizure detection using EEG: A survey of different techniques," in Proc. of the 2016 International Conference on Emerging Technologies (ICET), pp.1-6, 2016. DOI:0.1109/ICET.2016.7813209 https://doi.org/10.1109/ICET.2016.7813209
- Y. Yuan, G. Xun, F. Ma, Q. Suo, H. Xue, K. Jia et al., "A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning," in Proc. of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp.206-209, 2018. DOI:10.1109/BHI.2018.8333405
- E. Kim and D. Shin, "Nonlinear and Independent Component Analysis of EEG with Artifacts," J. Fuzzy Log. Intell. Syst., Vol.12, No.5, pp.442-450, 2002.
- N. P. Castellanos and V. A. Makarov, "Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis," J. Neurosci. Methods, Vol.158, No.2, pp.300-312, 2006. DOI:10.5391/JKIIS.2002.12.5.442
- M. A. Klados, C. Papadelis, C. Braun, and P. D. Bamidis, "REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts," Biomed. Signal Process. Control, Vol.6, No.3, pp.291-300, 2011. DOI:10.1016/j.bspc.2011.02.001
- J. W. Matiko, S. Beeby, and J. Tudor, "Real time eye blink noise removal from EEG signals using morphological component analysis," in Proc. of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.13-16, 2013. DOI:10.1109/EMBC.2013.6609425