FIG. 1. Cross-sectional view of the elliptical air hole photonic crystal fiber.
FIG. 2. Variation of effective cladding refractive index (neff,cl) of PCF as a function of wavelength for different eccentricity values of air hole for Λ = 2.2 μm and a = 0.52 μm.
FIG. 3. Variation of dispersion as a function wavelength with varying eccentricity of air hole for Λ = 2.2 μm and a = 0.52 μm.
FIG. 4. Effective area of a PCF as a function of wavelength for different eccentricity of air hole at Λ = 2.2 μm and a = 0.52 μm.
FIG. 6. (a) Calculated SPM broaden spectrum of the Gaussian pulse at eccentricity e = 0.2 for L = 0.6 Km, (b) Pulse propagation along the length 0.6 Km for e = 0.2. (c) Calculated SPM broaden spectrum of the Gaussian pulse at eccentricity e = 0.6 for L = 0.6 Km, (d) Pulse propagation along the length 0.6 Km for e = 0.6.
FIG. 5. Nonlinear coefficient variation of a PCF as a function of wavelength for different eccentricity values of air hole for at Λ = 2.2 μm and a = 0.52 μm.
TABLE 1. Comparison of Zero dispersion wavelengths
References
- J. C. Knight, "Photonic crystal fibres," Nature 424, 847-854 (2003). https://doi.org/10.1038/nature01940
- P. S. J. Russel, "Photonic crystal fibers," J. Lightw. Tech. 24, 4729-4749 (2006). https://doi.org/10.1109/JLT.2006.885258
- T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). https://doi.org/10.1364/OL.22.000961
- H. Ademgil and S. Haxha, "Endlessly single mode photonic crystal fiber with improved effective mode area," Opt. Commun. 285, 1514-1518 (2012). https://doi.org/10.1016/j.optcom.2011.10.067
- R. K. Sinha, A. Kumar, and T. S. Saini, "Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features," IEEE J. Sel. Top. Quantum Electron. 22, 287-292 (2016). https://doi.org/10.1109/JSTQE.2015.2477781
- M. J. Steel and R. M. Osgood Jr., "Polarization and dispersion properties of elliptical-hole photonic crystal fibers," J. Lightw. Technol. 19, 495-503,(2001). https://doi.org/10.1109/50.920847
- Md. Selim Habib, Md. Samiul Habib, S. M. Abdur Razzak, Yoshinori Namihira, M. A. Hossain, and M. A. Goffar Khan, "Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers," Optik - Int. J. Light Electron Opt. 124, 3851-3855 (2013). https://doi.org/10.1016/j.ijleo.2012.12.014
- S. K. Varshney, M. P. Singh, and R. R. Sinha, "Propagation characteristics of photonic crystal fibers," J. Opt. Commun. 24, 192-198 (2003).
- K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003). https://doi.org/10.1364/OE.11.001503
- K. Saitoh, N. J. Florous, and M. Koshiba, "Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach," Opt. Lett. 31, 26-28 (2006). https://doi.org/10.1364/OL.31.000026
- Adller de O. Guimarães, Jose P. da Silva, and Emmanuel R. M. Dantas, "Chromatic dispersion of an optical fiber based on photonic quasi crystals with twelve fold symmetry and its application as directional coupling," J. Microwaves, Optoelectron. Electromagn. Appl. 14, 170-182 (2015). https://doi.org/10.1590/2179-10742015v14i2481
- Md. Selim Habib, Md. Samiul Habib, S. M. Abdur Razzak, and Md. Anwar Hossain, "Proposal for highly bi-refringent broadband dispersion compensating octagonal photonic crystal fiber," Opt. Fiber Technol. 19, 461- 467 (2013). https://doi.org/10.1016/j.yofte.2013.05.014
- K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003). https://doi.org/10.1109/LPT.2003.818215
- N. Muduli, G. Palai, and S. K. Thripathy, "Analysis of nonlinear PCF for birefringence application using FDTD method," Optik - Int. J. Light Electron Opt. 125, 3499-3502 (2014). https://doi.org/10.1016/j.ijleo.2014.01.177
- T. S. Saini, A. Kumar, and R. K. Sinha, "Asymmetric largemode- area photonic crystal fiber structure with effective single-mode operation: design and analysis," Appl. Opt. 55, 2306-2311 (2016). https://doi.org/10.1364/AO.55.002306
- D. K. Sharma, S. M. Tripathi, and A. Sharma, "Optical characteristics of polymer-infused microstructure optical fiber using an analytical field model," Optik - Int. J. Light Electron Opt. 140, 1-9 (2017). https://doi.org/10.1016/j.ijleo.2017.04.035
- J. F. Liao, J. Q. Sun, M. D. Du, and Y. Qin, "Highly nonlinear dispersion-flattened slotted spiral photonic crystal fibers," IEEE Photon. Technol. Lett. 26, 380-383 (2014). https://doi.org/10.1109/LPT.2013.2293661
- T. S. Saini, A. Kumar, and R. K. Sinha, "Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications," Appl. Opt. 53, 7246-7251 (2014). https://doi.org/10.1364/AO.53.007246
- P. S. Maji and P. R. Chaudhuri, "Near-elliptic core triangular-lattice and square-lattice PCFs: A comparison of birefringence, cut-off and GVD characteristics towards fiber device application," J. Opt. Soc. Korea 18, 207-216 (2014). https://doi.org/10.3807/JOSK.2014.18.3.207
- L. Zhang and C. Yang, "Photonic crystal fibers with squeezed hexagonal lattice," Opt. Express 12, 2371-2376 (2004). https://doi.org/10.1364/OPEX.12.002371
- P. S. Maji and P. R. Chaudhuri, "Designing an ultra-negative dispersion photonic crystal fiber with square-lattice geometry," ISRN Optics, Article ID 545961 (2014).
- J. Wang, C. Jiang, W. Hu, M. Gao, and H. Ren, "Dispersion and polarization properties of elliptical air hole containing photonic crystal fibers," Opt. Laser Technol. 39, 913-917 (2007). https://doi.org/10.1016/j.optlastec.2006.07.003
- A. Agrawal, N. Kejalakshmy and B. M. A. Rahman, "Polarization and dispersion properties of elliptical hole golden spiral photonic crystal finer," Apply. Phys. B 99, 717-726 (2010).
- L. Hong, C. Haiyaing, and L. Jim, "Characteristics and analysis of hybrid photonic crystal fiber with hexagonal structure," Optik - Int. J. Light Electron Opt. 126, 2335-2337 (2015). https://doi.org/10.1016/j.ijleo.2015.05.124
- J. C. G. Vega, R. M. R. Dagnino, M. A. M. Nava, and S. C. Cerda, "Mathieu functions, a visual approach," Am. J. Phys. 71, 233-242 (2003). https://doi.org/10.1119/1.1522698
- T. Do-Nhat and F. A. Alhargan, "Exact eigen value equations of modes in elliptical fibers of step-index profile," Radio Sci. 32, 1337-1345 (1997). https://doi.org/10.1029/97RS00712
- J. K. Shaw, W. M. Henry, and W. R. Winfrey "Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation" J. Lightw. Technol. 13, 2359-2371 (1995). https://doi.org/10.1109/50.475576
- Y. Li, C. Wang, and M. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004). https://doi.org/10.1016/j.optcom.2004.04.040
- M. A. Hussain, Y. Namihira, M. A. Islam, S. M. A. Razzak, Y. Hirako, and K. Miyagi, "Tailoring supercontinuum generation using highly nonlinear photonic crystal fiber," Opt. Laser Technol. 44, 1889-1896 (2012). https://doi.org/10.1016/j.optlastec.2012.01.029
- G. P. Agarwal, Nonlinear fiber optics (Academic Press, Fourth Edition, 2006), Chapter 4.
- S. Revathi, S. R. Inbathini, and R. A. Saifudeen, "Highly nonlinear and birefringent spiral photonic crystal fiber," Adv. OptoElectron., Article ID 464391 (2014).
- T.-L. Wu and C.-H. Chao, "Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole," IEEE Photon. Technol. Lett. 16, 126-128 (2004). https://doi.org/10.1109/LPT.2003.819411
- Z. Ya-Ni, "Optimization of highly nonlinear dispersionflattened photonic crystal fiber for supercontinuum generation," Chin. Phys. B, 22, 014214-5 (2013). https://doi.org/10.1088/1674-1056/22/1/014214