참고문헌
- M. Brodmann and E. Park, On varieties of almost minimal degree I: Secant loci of rational normal scrolls. J. Pure Appl. Algebra 214 (2010), 2033-2043 https://doi.org/10.1016/j.jpaa.2010.02.009
- M. Brodmann and E. Park, On varieties of almost minimal degree III: Tangent spaces and embedding scrolls. J. Pure Appl. Algebra 215 (2011), no. 12, 2859-2872 https://doi.org/10.1016/j.jpaa.2011.04.006
- M. Brodmann, E. Park and P. Schenzel, On varieties of almost minimal degree II: A rank-depth formula. Proc. Amer. Math. Soc. 139 (2011), no. 6, 2025-2032 https://doi.org/10.1090/S0002-9939-2010-10667-6
-
M. Brodmann and P. Schenzel, Curves of Degree r+2 in
$\mathbb{P}^r$ :Cohomological, Geometric, and Homological Aspects. J. Algebra 242 (2001), 577-623 https://doi.org/10.1006/jabr.2001.8847 - M. Brodmann and P. Schenzel, On varieties of almost minimal degree in small codimension. J. Algebra 305 (2006), no.2, 789-801. https://doi.org/10.1016/j.jalgebra.2006.03.027
- M. Brodmann and P. Schenzel, Arithmetic properties of projective varieties of almost minimal degree. J. Algebraic Geometry 16 (2007), 347-400. https://doi.org/10.1090/S1056-3911-06-00442-5
- G. Castelnuovo, Sui multipli di une serie lineare di gruppi di punti appartenente ad une curva algebraic. Rend. Circ. Mat. Palermo (2) 7 (1893), 89-110. https://doi.org/10.1007/BF03012436
- M. Decker, G.M. Greuel and H. Schonemann, Singular 3 - 1 - 2 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011).
- D. Eisenbud, M. Green, K. Hulek and S. Popescu, Restriction linear syzygies: algebra and geometry, Compositio Math. 141 (2005), 1460-1478. https://doi.org/10.1112/S0010437X05001776
- D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity. Journal of Algebra 88 (1984) 89-133. https://doi.org/10.1016/0021-8693(84)90092-9
- La. Ein and R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invention. Math. 111 (1993), 51-67. https://doi.org/10.1007/BF01231279
- T. Fujita, Dening equations for certain types of polarized varieties. in: Complex Analysis and Algebraic Geometry, Cambridge University Press, Cambridge (1977), 165-173.
- M. Green and R. Lazarsfeld, Some results on the syzygies of nite sets and algebraic curves. Compos. Math. 67 (1988), 301-314.
- L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnovo, and the equations dening space curves . Inventiones mathematicae 72 (1983), 491-506. https://doi.org/10.1007/BF01398398
- J. Harris (with the collaboration of D. Eisenbud), Curves in Projective Space. Les Presses de l'Universite de Montreal, Montreal, 1982.
- L.T. Hoa, On minimal free resolutions of projective varieties of degree = codimension+2. J. Pure Appl. Algebra 87 (1993), 241-250. https://doi.org/10.1016/0022-4049(93)90112-7
- S. L'vovsky, On in ection points, monomial curves, and hypersurfaces containing projective curves. Math. Ann. 306 (1996), 719-735. https://doi.org/10.1007/BF01445273
- W. Lee and E. Park, On non-normal del Pezzo varieties. J. Algebra 387 (2013), 11-28 https://doi.org/10.1016/j.jalgebra.2013.04.013
- W. Lee and E. Park, Projective curves of degree=codimension+2 II. Internat. J. Algebra Comput. 26 (2016), no. 1, 95-104. https://doi.org/10.1142/S0218196716500041
- W. Lee and E. Park, On the minimal free resolution of curves of maximal regularity. Bull. Korean Math. Soc. 53 (2016), no. 6, 1707-1714. https://doi.org/10.4134/BKMS.b150890
- W. Lee, E. Park and P. Schenzel, On the classication of non-normal cubic hypersurfaces. J. Pure Appl. Algebra 215 (2011), 2034-2042. https://doi.org/10.1016/j.jpaa.2010.12.007
- W. Lee, E. Park and P. Schenzel, On the classication of non-normal complete intersection of two quadrics. J. Pure Appl. Algebra 216 (2012), no. 5, 1222-1234. https://doi.org/10.1016/j.jpaa.2011.12.009
- D. Mumford, Lectures on curves on an algebraic surface. With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59 Princeton University Press, Princeton, N.J. 1966 xi+200 pp.
- U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree. Transactions of the American Mathematical Society 351, 4381-4409 (1999) https://doi.org/10.1090/S0002-9947-99-02357-0
- U. Nagel, Minimal free resolutions of projective subschemes of small degree. Syzygies and Hilbert functions, 209232, Lect. Notes Pure Appl. Math., 254, Chapman and Hall/CRC, Boca Raton, FL, 2007.
- E. Park, Projective curves of degree = codimension+2. Math. Z. 256 (2007), no. 3, 685- 697 https://doi.org/10.1007/s00209-007-0101-z
- E. Park, On hypersurfaces containing projective varieties. Forum Math. 27 (2015), no. 2, 843-875
- Schreyer,F-O, Syzygies of canonical curves and special linear series, Math.Ann.275,105-137 (1986). https://doi.org/10.1007/BF01458587
- Fyodor Zak, Determinants of projective varieties and their degrees. Algebraic transformation groups and algebraic varieties, 207-238, Encyclopaedia Math. Sci., 132, Springer, Berlin, 2004.