DOI QR코드

DOI QR Code

Evaluation of Carbon Fiber distribution in Unidirectional CF/Al Composites by Two-Dimensional Spatial Distribution Method

  • Lee, Moonhee (Division of Mechanical Engineering, Dong-Eui Institute of Technology) ;
  • Kim, Sungwon (Division of Mechanical Engineering, Dong-Eui Institute of Technology) ;
  • Lee, Jongho (Division of Mechanical Engineering, Dong-Eui Institute of Technology) ;
  • Hwang, SeungKuk (Computer Aided Mechanics Department, Changwon Campus Korea Polytechnic) ;
  • Lee, Sangpill (Department of Mechanical Engineering, Dong-Eui University) ;
  • Sugio, Kenjiro (Materials and Production Engineering, Institute of Engineering, Hiroshima University) ;
  • Sasaki, Gen (Materials and Production Engineering, Institute of Engineering, Hiroshima University)
  • Received : 2017.11.29
  • Accepted : 2018.01.08
  • Published : 2018.01.31

Abstract

Low pressure casting process for unidirectional carbon fiber reinforced aluminum (UD-CF/Al) composites which is an infiltration route of molten Al into porous UD-CF preform has been a cost-effective way to obtain metal matrix composites (MMCs) but, easy to cause non-uniform fiber distribution as CF clustering. Such clustered CFs have been a problem to decrease the density and thermal conductivity (TC) of composites, due to the existence of pores in the clustered area. To obtain high thermal performance composites for heat-sink application, the relationship between fiber distribution and porosity has to be clearly investigated. In this study, the CF distribution was evaluated with quantification approach by using two-dimensional spatial distribution method as local number 2-dimension (LN2D) analysis. Note that the CFs distribution in composites sensitively changed by sizes of Cu bridging particles between the CFs added in the UD-CF preform fabrication stage, and influenced on only $LN2D_{var}$ values.

Keywords

References

  1. C. Zweben: JOM, 44 (1992) 15-23.
  2. D.D.L. Chung: Appl. Therm. Eng. 21 (2001) 1593-1605. https://doi.org/10.1016/S1359-4311(01)00042-4
  3. J.M. Molina, J. Narciso, L. Weber, A. Mortensen, E. Louis: Mater. Sci. Eng. A 480 (2008) 483-488. https://doi.org/10.1016/j.msea.2007.07.026
  4. M. Schobel, W. Altendorfer, H.P. Degischer, S. Vaucher, T. Buslaps, M. Di Michiel, M. Hofmann: Compos. Sci. and Technol. 71 (2011) 724-733. https://doi.org/10.1016/j.compscitech.2011.01.020
  5. R. Zehringer, A. Stuck, T. Lang: Solid-State Electronics 42 (1998) 2139-2151. https://doi.org/10.1016/S0038-1101(98)00209-3
  6. Shan Yin, King Jet Tseng, Jiyun Zhao: Appl. Therm. Eng. 52 (2013) 120-129. https://doi.org/10.1016/j.applthermaleng.2012.11.014
  7. K. Sugio, Y. Choi, G.Sasaki: Mater. Trans. 57(5) (2016) 582-589. https://doi.org/10.2320/matertrans.MC201505
  8. J. You: Nuclear Materials and Energy 5 (2015) 7-18. https://doi.org/10.1016/j.nme.2015.10.001
  9. O. Lee, M. Lee, Y. Choi, K. Sugio,K. Matsugi,G. Sasaki: Mater. Trans. 55(5) (2014) 827-830. https://doi.org/10.2320/matertrans.MBW201316
  10. Y. B. Choi, G. Sasaki, K. Matsugi, N. Sorida, S. Kondoh, T. Fujii, O. Yanagisawa: JSME A 49 (2006) 20-24.
  11. Y. B. Choi, K. Matsugi, G. Sasaki, S. Kondoh: Mater. Trans. 49 (2008) 390-392. https://doi.org/10.2320/matertrans.MEP2007627
  12. M. Lee, Y. Choi, K. Sugio, K. Matsugi, G. Sasaki: Sci. Eng. Compos. Mater. 18 (2011) 167-171
  13. M. Lee, Y. Choi, K. Sugio, K. Matsugi, G. Sasaki: Mater. Trans. 52(5) (2011) 939-942. https://doi.org/10.2320/matertrans.L-MZ201110
  14. G. Sasaki, K. Ishikawa, K. Sugio, Y. Choi, K. Matsugi: The 8th Pacific Rim International Congress on Advanced Materials and Proc. Proceedings (2013) 1487-1492
  15. K. Sugio, Y. Momota, D. Zhang, H. Fukushima, O. Yanagisawa: Mater. Trans. 48(10) (2007) 2762-2767. https://doi.org/10.2320/matertrans.MER2007125
  16. K. Sugio, Y. Momota, D. Zhang, H. Fukushima, O. Yanagisawa: Mater. Trans. 48(10) (2007) 2768-2777. https://doi.org/10.2320/matertrans.MER2007137
  17. Long S, Zhang Z, Flower HM: Acta Metall. Mater. 42 (1994) 1389-1397. https://doi.org/10.1016/0956-7151(94)90157-0