References
- Bathe, K.J. and Wilson, E.L. (1973), "Stability and accuracy analysis of direct integration methods", Earthq. Eng. Struct. Dyn., 1, 283-291.
- Bayat, M., Bayat, M. and Pakar, I. (2015), "Analytical study of nonlinear vibration of oscillators with damping", Earthq. Struct., 9(1), 221-232. https://doi.org/10.12989/eas.2015.9.1.221
- Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland.
- Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
- Chang, S.Y. (2006), "Accurate representation of external force in time history analysis", J. Eng. Mech., ASCE, 132(1), 34-45. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(34)
- Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452
- Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
- Chang, S.Y. (2014a), "A family of non-iterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720
- Chang, S.Y. (2014b), "Numerical dissipation for explicit, unconditionally stable time integration methods", Earthq. Struct., 7(2), 157-176.
- Chang, S.Y. (2015), "Dissipative, non-iterative integration algorithms with unconditional stability for mildly nonlinear structural dynamics", Nonlin. Dyn., 79(2), 1625-1649. https://doi.org/10.1007/s11071-014-1765-7
- Chang, S.Y. (2016), "A virtual parameter to improve stability properties for an integration method", Earthq. Struct., 11(2), 297-313. https://doi.org/10.12989/eas.2016.11.2.297
- Chang, S.Y., Wu, T.H. and Tran, N.C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815
-
Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-
${\alpha}$ method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803 - Fattah, M.Y., Hamoo, M.J. and Dawood, S.H. (2015), "Dynamic response of a lined tunnel with transmitting boundaries", Earthq. Struct., 8(1), 275-304. https://doi.org/10.12989/eas.2015.8.1.275
- Gao, Q., Wu, F., Zhang, H.W., Zhong, W.X., Howson, W.P. and Williams, F.W. (2012), "A fast precise integration method for structural dynamics problems", Struct. Eng. Mech., 43(1), 1-13. https://doi.org/10.12989/sem.2012.43.1.001
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto- dynamics", Comput. Meth. Appl. Mech. Eng., 2, 69-97.
- Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dyn., 6, 99-118. https://doi.org/10.1002/eqe.4290060111
- Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292. https://doi.org/10.1002/eqe.4290050306
- Kaveh, A., Aghakouchak, A.A. and Zakian, P. (2015), "Reduced record method for efficient time history dynamic analysis and optimal design", Earthq. Struct., 8(3), 639-663. https://doi.org/10.12989/eas.2015.8.3.639
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Implicit higherorder accuracy method for numerical integration in dynamic analysis", J. Struct. Eng., 134 (6), 973-985. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(973)
- Rezaiee-Pajand, M. and Karimi-Rad, M. (2017), "A family of second-order fully explicit time integration schemes", Comput. Appl. Math., 1-24.
- Rezaiee-Pajand, M., Sarafrazi, S.R. and Hashemian, M. (2011), "Improving stability domains of the implicit higher order accuracy method", Int. J. Numer. Meth. Eng., 88 (9), 880-896. https://doi.org/10.1002/nme.3204
- Rezaiee-Pajanda, M. and Hashemian, M. (2016), "Time integration method based on discrete transfer function", Int. J. Struct. Stab. Dyn., 16(5), 1550009. https://doi.org/10.1142/S0219455415500091
- Rezaiee-Pajanda, M., Hashemian, M. and Bohlulyb, A. (2017), "A novel time integration formulation for nonlinear dynamic analysis", Aerosp. Sci. Technol., 69, 625-635. https://doi.org/10.1016/j.ast.2017.07.032
- Romero, A., Galvin, P. and Dominguez, J. (2012) "A time domain analysis of train induced vibrations", Earthq. Struct., 3(3), 297-313. https://doi.org/10.12989/eas.2012.3.3_4.297
- Su, C., Huang, H., Ma, H. and Xu, R. (2014), "Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach", Earthq. Struct., 7(2), 119-139. https://doi.org/10.12989/eas.2014.7.2.119
- Verma, M., Rajasankar, J. and Iyer, N.R. (2015), "Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing", Earthq. Struct., 8(6), 1325-1348. https://doi.org/10.12989/eas.2015.8.6.1325
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566.