나노 소재를 이용한 전자파 차폐 소재 리뷰

  • Published : 2018.01.31

Abstract

Keywords

References

  1. J. Chen, C. T. Liu, "Technology advances in flexible displays and substrates". IEEE Access, vol. 1, pp. 150-158, 2013. https://doi.org/10.1109/ACCESS.2013.2260792
  2. Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, "Monitoring of vital signs with flexible and wearable medical devices". Adv. Mater., vol. 28, pp. 4373-4395, 2016. https://doi.org/10.1002/adma.201504366
  3. H. Pang, K. Rajan, J. Silvernail, P. Mandlik, R. Ma, M. Hack, J. J. Brown, J. S. Yoo, S.-H. Jung, and Y.-C. Kim, "In recent progress of flexible AMOLED displays, advances in display technologies; And e-papers and flexible displays", International Society for Optics and Photonics, p. 79560J, Feb. 2011.
  4. J. A. Rogers, T. Someya, and Y. Huang, "Materials and mechanics for stretchable electronics". Science, vol. 327, pp. 1603-1607, 2010. https://doi.org/10.1126/science.1182383
  5. E. Torres Alonso, G. Karkera, G. F. Jones, M. F. Craciun, and S. Russo, "Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes". ACS Appl. Mater. Interfaces, vol. 8, pp. 16541-16545, 2016. https://doi.org/10.1021/acsami.6b04042
  6. S. Umrao, T. K. Gupta, S. Kumar, V. K. Singh, M. K. Sultania, J. H. Jung, I.-K. Oh, and A. Srivastava, "Microwaveassisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band". ACS Appl. Mater. Interfaces, vol. 7, pp. 19831-19842, 2015. https://doi.org/10.1021/acsami.5b05890
  7. B. Shen, W. Zhai, and W. Zheng, "Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding". Adv. Funct. Mater., vol. 24, pp. 4542-4548, 2014. https://doi.org/10.1002/adfm.201400079
  8. W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, Q.-L. Zhao, and M.-S. Cao, "Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding". J. Mater. Chem., vol. 3, pp. 2097-2107, 2015. https://doi.org/10.1039/C4TA05939E
  9. Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, "Lightweight and flexible graphene foam composites for highperformance electromagnetic interference shielding". Adv. Mater., vol. 25, pp. 1296-1300, 2013. https://doi.org/10.1002/adma.201204196
  10. H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, "Selective metal pattern formation and its EMI shielding efficiency". Appl. Surf. Sci., vol. 252, pp. 2665-2672, 2006. https://doi.org/10.1016/j.apsusc.2005.03.206
  11. A. Ameli, M. Nofar, S. Wang, and C. B. Park, "Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding". ACS Appl. Mater. Interfaces, vol. 6, pp. 11091-11100, 2014. https://doi.org/10.1021/am500445g
  12. W.-L. Song, C. Gong, H. Li, X.-D. Cheng, M. Chen, X. Yuan, H. Chen, Y. Yang, and D. Fang, "Graphene-based sandwich structures for frequency selectable electromagnetic shielding". ACS Appl. Mater. Interfaces, vol. 9, pp. 36119-36129, 2017. https://doi.org/10.1021/acsami.7b08229
  13. 김종호, 윤영근, 김명돈, 정영준, "5G/IoT 시대의 밀리미터파 대역 전파전파 기술동향(Harmonized Site-General Path Loss 모델 개발)", 전자파기술, 28(4), pp. 45-53, 2017년 7월.
  14. 김창주, "자율주행차 전파 기술", 전자파기술, 28(4), pp. 27-36, 2017년 7월.
  15. D. Patton, "Automated drive: A reality check", Jun. 2015.
  16. 강영흥 등, "무인 이동체를 위한 전파기술 및 정책연구", KCA연구 2016-16, 2017년.
  17. P. Smulders, L. Correia, "Characterisation of propagation in 60 GHz radio channels", Electronics Communication Engineering Journal, vol. 9, no. 2, pp. 73-80, Apr. 1997. https://doi.org/10.1049/ecej:19970204
  18. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi, and F. Guitierrez, "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, 2013. https://doi.org/10.1109/ACCESS.2013.2260813
  19. G. R. MacCartney, M. Samimi, and T. S. Rappaport, "Omnidirectional path loss models from measurements recorded in New York city at 28 GHz and 73 GHz", in IEEE International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC), Sep. 2014.
  20. T. S. Rappaport, R. MacCartney, M. Samimi, and S. Sun, "Wideband millimeterwave propagation measurements and channel models for future wireless communication system design", IEEE Trans. on Communications, vol. 63, no. 9, pp. 3029-3056, Sep. 2015. https://doi.org/10.1109/TCOMM.2015.2434384
  21. S. Kwon, R. Ma, U. Kim, H. R. Choi, and S. Baik, "Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber". Carbon, vol. 68, pp. 118-124, 2014. https://doi.org/10.1016/j.carbon.2013.10.070
  22. D. G. Kim, S. H. Kim, J. H. Kim, J.-C. Lee, J.-P. Ahn, and S. W. Kim, "Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices". Sci. Rep., vol. 7, p. 45903, 2017. https://doi.org/10.1038/srep45903
  23. J. Jang, "Displays develop a new flexibility". Mater. Today, vol. 9, pp. 46-52, 2006.
  24. T. Ikeda, D. Nakamura, M. Ikeda, Y. Iwaki, H. Ikeda, K. Watanabe, H. Miyake, Y. Hirakata, S. Yamazaki, D. Kurosaki, M. Ohno, C. Bower, D. Cotton, A. Matthews, P. Andrew, C. Gheorghiu, and J. Bergquis, "A 4-mm radius curved display with touch screen". Dig. Tech. Pap., vol. 45, pp. 118-121 2014. https://doi.org/10.1002/j.2168-0159.2014.tb00033.x
  25. M. Melzer, J. Monch, D. Makarov, Y. Zabila, G. Bermudez, D. Karnaushenko, S. Baunack, F. Bahr, C. Yan, M. Kaltenbrunner, and O. Schmidt, "Wearable magnetic field sensors for flexible electronics", Adv. Mater., vol. 27, pp. 1274-1280, 2015. https://doi.org/10.1002/adma.201405027
  26. J. Lewis, "Material challenge for flexible organic devices", Mater. Today, vol. 9, pp. 38-45, 2006. https://doi.org/10.1016/S1369-7021(06)71446-8
  27. S. Greco, M. S. Sarto, and A. Tamburrano, "Shielding performances of ITO transparent windows: Theoretical and experimental characterization", EMC Europe, pp. 8-12, Sep. 2008.
  28. J.-L. Huang, B.-S. Yau, C.-Y. Chen, W.-T. Lo, and D.-F. Lii, "The electromagnetic shielding effectiveness of indium tin oxide films", Ceramics Ceram. International Int., vol. 27 no. 3, pp. 363-365, 2001. https://doi.org/10.1016/S0272-8842(00)00088-2
  29. Y.-J. Choi, S. C. Gong, D. C. Johnson, S. Golledge, G. Y. Yeom, and H.-H. Park, "Characteristics of the electromagnetic interference shielding effectiveness of al-doped ZnO thin films deposited by atomic layer deposition", Applied Appl. Surface Surf. Science Sci., vol. 269, pp. 92-97, 2013.
  30. S. K. Vishwanath, D.-G. Kim, and J. Kim, "Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing. Japanese", J. Appl. Phys., vol. 53(5S3), pp. 05HB11, 2014. https://doi.org/10.7567/JJAP.53.05HB11
  31. H. Wang, Z. Lu, and J. Tan, "Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays", Optics Opt. Express, vol. 24, no. 20, pp. 22989-23000, 2016. https://doi.org/10.1364/OE.24.022989
  32. S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, "Electromagnetic interference shielding effectiveness of monolayer graphene", Nanotechnology, vol. 23, no. 45, p. 455704, 2012. https://doi.org/10.1088/0957-4484/23/45/455704
  33. S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, "Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition", ACS Appl. Mater. & Interfaces, vol. 6, no. 20, pp. 17647-17653, 2014. https://doi.org/10.1021/am503893v
  34. Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance", Nanoscale, vol. 8, no. 37, pp. 16684-16693, 2016. https://doi.org/10.1039/C6NR02619B
  35. Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, "High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding", Carbon, vol. 115, pp. 34-42, 2017. https://doi.org/10.1016/j.carbon.2016.12.092
  36. L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene. ACS Appl. Mater. & Interfaces, vol. 9, no. 39, pp. 34221-34229, 2017. https://doi.org/10.1021/acsami.7b09372
  37. S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, "Electromagnetic interference shielding effectiveness of monolayer graphene", Nanotechnology, vol. 23, p. 455704, Oct. 2012. https://doi.org/10.1088/0957-4484/23/45/455704
  38. M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. H. Kim, D. G. Kim, J. K. Kim, and J. Park, "Highly efficient and bendable organic solar cells with solutionprocessed silver nanowire electrodes", Adv. Funct. Mater., vol. 23, pp. 4177-4184, 2013. https://doi.org/10.1002/adfm.201202646
  39. M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, and S. Nam, "Highperformance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures", Nano Lett., vol. 13, pp. 2814-2821, 2013. https://doi.org/10.1021/nl401070p
  40. J. Jin, J. Lee, S. Jeong, S. Yang, J.-H. Ko, H.-G. Im, S.-W. Baek, J.-Y. Lee, and B.-S. Bae, "High-performance hybrid plastic films: A robust electrode platform for thin-film optoelectronics", Energy Environ. Sci., vol. 6, pp. 1811-1817, 2013. https://doi.org/10.1039/c3ee24306k
  41. A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B. P. Singh, A. P. Singh, S. K. Dhawan, and S. R. Dhakate, "Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding", ACS Appl. Mater. & Interfaces, vol. 8, pp. 10600-10608, 2016. https://doi.org/10.1021/acsami.5b12334
  42. B. Zhao, C. Zhao, R. Li, S. M. Hamidinejad, and C. B. Park, "Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films", ACS Appl. Mater. & Interfaces, vol. 9, pp. 20873-20884, 2017. https://doi.org/10.1021/acsami.7b04935
  43. Z. Zeng, M. Chen, Y. Pei, S. I. S. Shahabadi, B. Che, P. Wang, and X. Lu, "Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding", ACS Appl. Mater. Interfaces, vol. 9, pp. 32211-32219, 2017. https://doi.org/10.1021/acsami.7b07643
  44. Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, and J. K. Kim, "Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding", ACS Appl. Mater.& Interfaces, vol. 9, pp. 9059-9069, 2017. https://doi.org/10.1021/acsami.7b01017