DOI QR코드

DOI QR Code

강화쑥의 온실 주년 재배 특성 분석 및 환경 처리를 통한 유파틸린 성분 증대

Analysis of Year-round Cultivation Characteristics of Artemisia princeps in Greenhouse and Enhancement of Eupathilin Content by Environmental Stress

  • 강우현 (서울대학교 식물생산과학부) ;
  • 한지수 (서울대학교 식물생산과학부) ;
  • 이승준 (서울대학교 식물생산과학부) ;
  • 신종화 (안동대학교 원예육종학과) ;
  • 안태인 (서울대학교 식물생산과학부) ;
  • 이주영 (한국과학기술연구원 천연물융합연구센터) ;
  • 강석우 (한국과학기술연구원 천연물융합연구센터) ;
  • 정상훈 (한국과학기술연구원 천연물융합연구센터) ;
  • 손정익 (서울대학교 식물생산과학부)
  • Kang, Woo Hyun (Department of Plant Science, Seoul National University) ;
  • Han, Zeesoo (Department of Plant Science, Seoul National University) ;
  • Lee, Seung Jun (Department of Plant Science, Seoul National University) ;
  • Shin, Jong Hwa (Department of Horticulture and Breeding, Andong National University) ;
  • Ahn, Tae In (Department of Plant Science, Seoul National University) ;
  • Lee, Joo Young (Natural Products Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kang, Suk Woo (Natural Products Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jung, Sang Hoon (Natural Products Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Son, Jung Eek (Department of Plant Science, Seoul National University)
  • 투고 : 2017.12.19
  • 심사 : 2018.01.09
  • 발행 : 2018.01.31

초록

쑥은 세포 손상과 위염 회복에 효능이 있는 유파틸린을 가지고 있는 약용작물이다. 본 연구의 목적은 강화쑥의 온실에서의 주년 생육 특성을 분석하고, 환경 스트레스를 처리하여 유파틸린의 함량을 증대시키는 것이다. 유리 온실에서 강화쑥을 육묘 6주, 정식 후 8주간 재배하여 생육 특성과 유파틸린 함량을 비교하였다. 광합성은 상대적으로 고광도인 $1,200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$에서도 포화되지 않았다. 생육속도는 정식 후 2주후에 최고에 도달하였고 정식 후 8주부터 감소하기 시작하였다. 강화쑥은 다년생 숙근초로 계절 변화에 민감하게 반응하여 봄 여름의 영양 생장기에는 높은 생육과 성분 함량을 나타내었으나, 가을과 겨울에는 개화 및 월동으로 인하여 생육 및 유파틸린 성분 함량이 크게 감소하였다. 따라서 강화쑥의 주년 재배를 위하여는 이를 억제하기 위한 야파 처리의 적용이 필수적인 것으로 판단되었다. 2종류의 스트레스와 1종류의 eliciter를 처리하였다. 건조 스트레스는 수확 전 5, 6, 7, 8 일간 관수을 중단하였고, 염류 스트레스는 수확 3일전 양액에 염화나트륨 추가하여 2, 4, 6, $8dS{\cdot}m^{-1}$ 농도로 하였고, 메틸자스모네이트는 수확 3일전 12.5, 25, 50, $100{\mu}M$ 농도로 엽면 시비하였다. 건조 스트레스 처리구 중 7일 및 8일간 관수를 중단한 경우와 메틸자스모네이트를 $25{\mu}M$ 엽면 시비한 경우 유파틸린 함량이 증가하였다. 염류 스트레스 처리구에서는 유파틸린 함량 증대가 발견되지 않았다. 본 연구 결과는 환경 처리를 통해 유용 성분의 증대가 가능하고 의약 원료로써 강화쑥의 생산성과 품질을 크게 향상시킬 수 있음을 증명하였다.

Mugwort (Artemisia princeps) is a medicinal plant that has a substance called euphatilin, which is effective for cell damage and gastritis recovery. The objectives of this study were to investigate the annual growth characteristics of Artemisia princeps in greenhouse and to increase the eupatiline content by environmental stresses. Growth and eupatilin content of the plants were compared after 6 weeks of seedling and subsequent 8 weeks of greenhouse cultivation. Photosynthesis of mugwort plants did not saturate even at a relatively high light intensity of $1,200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Growth rate of the plants reached its highest at two weeks after transplanting and began to decrease since 8 weeks after transplanting. The plants showed typical characteristics of a perennial herbaceous plant as they were sensitive to seasonal changes. In particular, the plants showed high growth and eupatilin content in spring and summer as vegetative growth periods, but flowering and wintering caused considerable decreases in growth and eupatilin content in fall and winter. Therefore, application of night interruption is essential for year-round cultivationof the plant. Two stresses and a elicitor were treated: drought stresses by stopping irrigation at 5, 6, 7, and 8 days before harvest; salt stresses with nutrient solution concentrations of 2, 4, 6, 8, and $10dS{\cdot}m^{-1}$ by adding sodium chloride at 3 days before harvest; and foliar applications of methyl jasmonates of 12.5, 25, 50, and $100{\mu}M$ at 3 days before harvest. Significant increase in eupatilin content was observed at drought stresses of 7- and 8-days of irrigation stop and foliar application of $25{\mu}M$ methyl jasmonate, while no significant increase observed at salt stresses. From the results, it was confirmed that the environmental treatments can improve the productivity and quality of Artemisia princeps as a phamaceutical raw material.

키워드

참고문헌

  1. Ahn, J., J. Hur, H.G. Jung, and J. Park. 2012. Study on the growth environment of 'Gangwha-mugwort' through the climatological characteristic analysis of Gangwha region. Kor. J. Agric. Forest Meteorol. 14:71-78. https://doi.org/10.5532/KJAFM.2012.14.2.071
  2. Akula, R. and G.A. Ravishankar. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 6:1720-1731. https://doi.org/10.4161/psb.6.11.17613
  3. Anjum, S A., L.Wang, M. Farooq, I. Khan, and L. Xue. 2011. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J. Agron. Crop Sci. 197:296-301. https://doi.org/10.1111/j.1439-037X.2011.00468.x
  4. Baghalian, K., S. Abdoshah, F. Khalighi-Sigaroodi, and F. Paknejad. 2011. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiol. Biochem. 49:201e207. https://doi.org/10.1016/j.plaphy.2010.11.010
  5. Cocetta, G., M. Rossoni, C. Gardana, I. Mignani, A. Ferrante, and A. Spinardi. 2015. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum). Physiol. Planta. 153:269-283. https://doi.org/10.1111/ppl.12243
  6. Ferreira, J.F., J.E. Simon, and J. Janick. 1995. Developmental studies of Artemisia annua: Flowering and Artemisinin production under greenhouse and field conditions. Planta Medica. 61:167-170. https://doi.org/10.1055/s-2006-958040
  7. Ferreira, J.F. and J. Janick. 1995. Floral morphology of Artemisia annua with special reference to trichomes. Int. J. Plant Sci. 156:807-815. https://doi.org/10.1086/297304
  8. Figueiredo, A.C., J.G. Barroso, L.G. Pedro, and J.J. Scheffer. 2008. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Frag. J. 23:213-226. https://doi.org/10.1002/ffj.1875
  9. Garrido, Y., J.A. Tudela, A. Marin, T. Mestre, V. Martinez, and M.I. Gil. 2014. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. J. Sci. Food Agric. 94:1592-1599. https://doi.org/10.1002/jsfa.6462
  10. Jelodar, N.B., A. Bhatt, K. Mohamed, and C.L. Keng. 2014. New cultivation approaches of Artemisia annua L. for a sustainable production of the antimalarial drug artemisinin. J. Med. Plants Res. 8:441-447. https://doi.org/10.5897/JMPR11.1053
  11. Kim, E.H., Y.S. Kim, S.H. Park, Y.J. Koo, Y.D. Choi, Y.Y. Chung, and J.K. Kim. 2009. Methyl Jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol. 149:1751-1760. https://doi.org/10.1104/pp.108.134684
  12. Kim, J.M., T.K. To, A. Matsui, K. Tanoi, N.I. Kobayashi, F. Matsuda, and M. Seki. 2017. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants 3:17097. https://doi.org/10.1038/nplants.2017.97
  13. Kim, Y.J. and K.S. Kim. 2014. Effect of night interruption with mist and shade cooling systems on subsequent growth and flowering of cymbidium 'Red Fire' and 'Yokihi'. Kor. J. Hortic. Sci. Technol. 32:753-761.
  14. Ku, K.M., E.H. Jeffery, and J.A. Juvik. 2014a. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue. PLoS One 9:e103407. https://doi.org/10.1371/journal.pone.0103407
  15. Ku, K.M., E.H. Jeffery, and J.A. Juvik. 2014b. Optimization of methyl jasmonate application to broccoli florets to enhance health-promoting phytochemical content. J. Sci. Food Agric. 94:2090-2096.
  16. Laughlin, J.C., G. Heazlewood, and B. Beattie. 2002. Cultivation of Artemisia annua L. Artemisia 18:159-195.
  17. Lee, J.E., Y.S. Shin,, J.D. Cheung, H.W. Do, and Y.H. Kang. 2015. Effect of LED Light sources and their installation method on the growth of strawberry plants. Protected Hort. Plant Fac. 24:106-112. https://doi.org/10.12791/KSBEC.2015.24.2.106
  18. Lee, J.J., B.G. Han. M.N. Kim, and M.H. Chung. 1997. Effects of eupatilin on the release of Leukotriene B4, by helicobacter pylori-stimulated neutrophils and gastric mucosal cells. J. Kor. Soc. Microbiol. 32:659-666.
  19. Mbengue, A., S. Bhattacharjee, T. Pandharkar, H. Liu, G. Estiu, R.Y. Stahelin, ... K. Haldar. 2015. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520:683-687. https://doi.org/10.1038/nature14412
  20. Oh, M.M., E.E. Carey, and C.B. Rajashekar. 2010. Regulated water deficits improve phytochemical concentration in lettuce. J. Amer. Soc. Hortic. Sci. 135:223-229.
  21. Oh, T.Y., B.K. Ryu, J.I. Ko, B.O. Ahn, S.H. Kim, W.B. Kim, E.B. Lee, J.H. Jin, and K.B. Hahm. 1997. Protective effect of DA-9601, an extract of Artemisiae herba, against naproxen-induced gastric damage in arthritic rats. Arch. Pharm. Res. 20:414-419. https://doi.org/10.1007/BF02973932
  22. Oh, T.Y., G.J. Ahn, S.M. Choi, B.O. Ahn, and W.B. Kim. 2005. Increased susceptibility of ethanol-treated gastric mucosa to naproxen and its inhibition by DA-9601, an Artemisia asiatica extract. World J Gastroenterol. 11:7450-7456. https://doi.org/10.3748/wjg.v11.i47.7450
  23. Ornano, L., A. Venditti, M. Ballero, C. Sanna, L. Quassinti, M. Bramucci, ... A. Bianco. 2013. Chemopreventive and antioxidant activity of the chamazulene-rich essential oil obtained from Artemisia arborescens L. growing on the Isle of La Maddalena, Sardinia, Italy. Chem. Biodivers. 10:1464-1474. https://doi.org/10.1002/cbdv.201200435
  24. Poulson, M.E. and T. Thai. 2015. Effect of high light intensity on photoinhibition, oxyradicals and artemisinin content in Artemisia annua L. Photosynthetica 53:403-409. https://doi.org/10.1007/s11099-015-0130-5
  25. Rajabbeigi, E., I. Eichholz, N. Beesk, C. Ulrichs, L.W. Kroh, S. Rohn, and S. Huyskens-Keil. 2013. Interaction of drought stress and UV-B radiation-impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). J. Appl. Bot. Food Qual. 86:190-197.
  26. Reddy, A.R., K.V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161:1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  27. Ryu, B.K., B.O. Ahn, T.Y. Oh, S.H. Kim, W.B. Kim, and E.B. Lee. 1998. Studies on protective effect of DA-9601, Artemisia asiatica extract, on acetaminophen-and CCI4-induced liver damage in rats. Arch. Pharm. Res. 21:508-513. https://doi.org/10.1007/BF02975366
  28. Ryu, S. 2008. Environmental Variation of Available Component in Mugwort (Artemisia princeps Pamp.). J. Kor. Soc. Int. Agric. 20:40-46.
  29. Ryu, S., S. Han, J. Yang, and S. Kang. 2005. Variation of eupatilin and jaceocidin content of mugwort. Kor. J. Crop Sci. 50:204-207.
  30. Shin, J.H., H.H. Jung, and K.S. Kim. 2010. Night interruption using light emitting diodes (LEDs) promotes flowering of Cyclamen persicum in winter cultivation. Hortic. Environ. Biotechnol. 51:391-395.
  31. Yuan, Y., Y. Liu, C. Wu, S. Chen, Z. Wang, Z. Yang, S. Qin, and L. Huang. 2012. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS One 7:e42946.
  32. Zhang, W., Z. Cao, Z. Xie, D. Lang, L. Zhou, Y. Chu, and Y. Zhao. 2017. Effect of water stress on roots biomass and secondary metabolites in the medicinal plant Stellaria dichotoma L. var. lanceolata Bge. Sci. Hortic. 224:280-285. https://doi.org/10.1016/j.scienta.2017.06.030
  33. Zobayed, S.M.A., F. Afreen, and T. Kozai. 2007. Phytochemical and physiological changes in the leaves of St. John's wort plants under a water stress condition. Environ. Exp. Bot. 59:109-116. https://doi.org/10.1016/j.envexpbot.2005.10.002