DOI QR코드

DOI QR Code

Antioxidant Activities of Hot Water Extracts from Different Parts of Rugosa rose (Rosa rugosa Thunb.)

해당화(Rosa rugosa Thunb.) 부위별 열수추출물의 항산화 활성 분석

  • Kim, Ji-Woo (Division of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Um, Min (Division of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Jae-Won (Division of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University)
  • 김지우 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 엄민 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2017.09.25
  • Accepted : 2017.12.22
  • Published : 2018.01.25

Abstract

In this study, the antioxidant activities of hot water extracts of Rugosa rose (Rosa rugosa Thunb.) were evaluated. Total phenolic compounds (TPC) and total flavonoid compounds (TFC) were the highest in the leaf extracts at 107.29 mg/g and 24.28 mg/g, respectively. The DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging activity was in the following order: flower extract > leaf extract > seed extract > fruit extract. The $IC_{50}$ values for DPPH and ABTS of the flower extract were $0.87mg/m{\ell}$ and $0.27mg/m{\ell}$, respectively. The amount of gallic acid was higher in the flower (4.51 mg/g) and leaf extracts (0.97 mg/g) than in the other extracts. Among the fraction (A-F) of each extract, antioxidant activity was the highest in the C fraction of flower extract. It is due to high TPC (3305.43 mg/g) and TFC (878.42 mg/g). Statistical analysis revealed a strong correlation between TFC (or TPC) and radical scavenging activity at p-value < 0.001. Collectively, these results suggest that the hot water extracts of rugosa rose have potential antioxidant effects, and can be used in food, cosmetics, and the pharmaceutical industries.

본 연구에서는 해당화 부위별 열수추출물에 대한 항산화 활성을 분석하였다. 해당화의 부위별 추출물의 총 페놀성 화합물과 총 플라보노이드 함량은 잎에서 가장 높았으며, 각각 107.29, 24.28 mg/g로 나타났다. DPPH와 ABTS 라디칼 소거능은 꽃, 잎, 씨, 열매, 과육 추출물 순으로 활성이 높았으며, 꽃 추출물의 DPPH, ABTS 라디칼 소거능은 각각 $IC_{50}=0.87$, $0.27mg/m{\ell}$로 나타났다. 항산화 활성이 가장 높았던 꽃과 잎 추출물에서는 gallic acid가 각각 4.51, 0.97 mg/g로 다른 부위별 열수추출물에서보다 높았다. 해당화 부위별 열수추출물을 분획한 결과(A-F), 꽃 추출물의 C 분획물에서 높은 항산화 활성을 확인하였다. 이것은 총 페놀성 화합물과 총 플라보노이드 함량(3305.43, 878.42 mg/g)에 의한 것이며, p-value < 0.001에서 총 페놀성 화합물과 총 플라보노이드의 함량이 증가할수록 라디칼 소거능이 증가하는 상관관계 결과와 일치하였다. 따라서 해당화 열수추출물은 식품, 화장품, 의약품 산업 등에서 천연 항산화제로 사용가능할 것이다.

Keywords

References

  1. Aruoma, O.I., Murcia, A., Butler, J., Halliwell, B. 1993. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. Journal of Agricultural and Food Chemistry 41(11): 1880-1885. https://doi.org/10.1021/jf00035a014
  2. Brand-Williams, W., Cuvelier, M.E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1): 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  3. Chen, Z.Y., Chan, P.T., Ho, K.Y., Fung, K.P., Wang, J. 1996. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chemistry and Physics of Lipids 79(2): 157-163. https://doi.org/10.1016/0009-3084(96)02523-6
  4. Choi, Y.M., Kim, M.H., Shin, J.J., Park, J.M., Lee, J.S. 2003. The antioxidant activities of the some commercial teas. Journal of the Korean Society of Food Science and Nutrition 32(5): 723-727. https://doi.org/10.3746/jkfn.2003.32.5.723
  5. De'Nobili, M.D., Soria, M., Martinefski, M.R., Tripodi, V.P., Fissore, E.N., Rojas, A.M. 2016. Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. Journal of Food Engineering 175: 1-7. https://doi.org/10.1016/j.jfoodeng.2015.11.015
  6. Devasagayam, T.P.A, Tilak, J.C., Boloor, K.K., Sane, K.S., Ghaskadbi, S.S., Lele, R.D. 2004. Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India 52(10): 794-804.
  7. Hossain, Z., Mandal, A.K.A., Datta, S.K., Biswas, A.K. 2007. Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. Journal of Biotechnology 129(4): 658-667. https://doi.org/10.1016/j.jbiotec.2007.02.020
  8. Kahkonen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S., Heinonen, M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry 47(10): 3954-3962. https://doi.org/10.1021/jf990146l
  9. Kim, M.Y., Yi, J.H., Hwang, Y.Y., Song, K.S., Jun, M.R. 2008. Isolation and identification of antioxidant substances from the stems of butterbur (Petasites japonicus). Journal of the Korean Society of Food Science and Nutrition 37(8): 979-984. https://doi.org/10.3746/jkfn.2008.37.8.979
  10. Kim, S.S., Cha, H.C. 2017. Comparison of the total phenolic and flavonoid contents and antioxidant activities of four kinds of sand dune plants living in Taean, Korea. Korean Journal of Plant Resources 30: 8-16. https://doi.org/10.7732/kjpr.2016.30.1.008
  11. Koo, K.Y., Kim, W.B., Park, S.H., Kim, M.J., Kim, B.R., Hwang, J.H., Kim, M.J., Son, H.J., Hwang, D.Y., Kim, D.S., Lee, C.Y., Lee, H.S. 2016. Antioxidative properties of Asparagus cochinchinensis root. Journal of the Korean Society of Food Science and Nutrition 45: 524-532. https://doi.org/10.3746/jkfn.2016.45.4.524
  12. Kumar, S., Yadav, M., Yadav, A., Yadav, J.P. 2017. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm. f. South African Journal of Botany 111: 50-59. https://doi.org/10.1016/j.sajb.2017.03.012
  13. Lee, C.H., Shin, S.L. 2009. Merit and application of plant resourses as functional bio-materials for human life and health. Korean Journal of Plant Resources 5: 5-24.
  14. Lee, H.J., Ahn, J.W., Lee, B.J., Moon, S.G., Seo, Y.W. 2004. Antioxidant activity of Rosa rugosa. Korean Journal of Biotechnology and Bioengineering 19(1): 67-71.
  15. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Rice-Evans, C.A., Miller, N.J., Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20(7): 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  17. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299: 152-178.
  18. Smith, H., Doyle, S., Murphy, R. 2015. Filamentous fungi as a source of natural antioxidants. Food Chemistry 185: 389-397. https://doi.org/10.1016/j.foodchem.2015.03.134
  19. Tai, Z., Cai, L., Dai, L., Dong, L., Wang, M., Yang, Y., Ding, Z. 2011. Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chemistry 126(4): 1648-1654. https://doi.org/10.1016/j.foodchem.2010.12.048
  20. Thao, N.P., Luyen, B.T.T., Jo, S.H., Hung, T.M., Cuong, N.X., Nam, N.H., Kwon, Y.I., Minh, C.V., Kim, Y.H. 2014. Triterpenoid saponins from the roots of Rosa rugosa Thunb. as rat intestinal sucrase inhibitors. Archives of Pharmacal Research 37(17): 1280-1285. https://doi.org/10.1007/s12272-014-0384-7
  21. Urquiaga, I.N.E.S., Leighton, F. 2000. Plant polyphenol antioxidants and oxidative stress. Biological Research 33(2): 55-64.
  22. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The international Journal of Biochemistry & Cell Biology 39(1): 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  23. Van Acker, S.A., Tromp, M.N., Griffioen, D.H., Van Bennekom, W.P., Van Der Vijgh, W.J., Bast, A. 1996. Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine 20(3): 331-342. https://doi.org/10.1016/0891-5849(95)02047-0
  24. Williams, G.M., Iatropoulos, M.J., Whysner, J. 1999. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food and Chemical Toxicology 37(9): 1027-1038. https://doi.org/10.1016/S0278-6915(99)00085-X
  25. Xu, W., Zhang, F., Luo, Y., Ma, L., Kou, X., Huang, K. 2009. Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinum. Carbohydrate Research 344(2): 217-222. https://doi.org/10.1016/j.carres.2008.10.021
  26. Yu, S.C., Oh, T.J. 2016. Antioxidant activities and antimicrobial effects of extracts from auricularia auricula-judae. Journal of the Korean Society of Food Science and Nutrition 45(3): 327-332. https://doi.org/10.3746/jkfn.2016.45.3.327
  27. Zhang, J., Rui, X., Wang, L., Guan, Y., Sun, X., Dong, M. 2014. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control 42: 125-131. https://doi.org/10.1016/j.foodcont.2014.02.001