DOI QR코드

DOI QR Code

Phytochromes are Involved in the Regulation of Growth and the Gravitropic Response via Ethylene Production in Hypocotyl of Arabidopsis

애기장대의 하배축에서 피토크롬이 생장과 굴중성 반응에 미치는 영향

  • Lee, Sang Seung (Department of Biological Sciences, Andong National University) ;
  • Kim, Soon Young (Department of Biological Sciences, Andong National University)
  • Received : 2017.09.25
  • Accepted : 2017.12.18
  • Published : 2018.01.30

Abstract

Light is essential to the growth and development of plants, and it is perceived by phytochromes, which are one of the photoreceptors that regulate physiological responses in plants. Ethylene regulates the dormancy, senescence, growth, and development of organs in plants. This research focused on the interaction of phytochromes and ethylene to control hypocotyl growth and gravitropism using phytochrome mutants of Arabidopsis, phyA, phyB, and phyAB, under three light conditions: red (R) light, farred (FR) light, and white light. The mutant phyAB exhibited the most stimulation of gravitropic response of all three phytochrome mutants and wild type (WT) in all three light conditions. Moreover, phyB in the R light condition showed more negative gravitropism than phyA. However, phyB in the FR light condition showed less curvature than phyA. The hypocotyl growth pattern was similar to the gravitropic response in several light conditions. To explain the mechanism of the regulation of gravitropic response and growth, we measured the ethylene production and activities of in vitro ACS and ACO. Ethylene production was reduced in all the mutants grown in white light in comparison to the WT. Ethylene production increased in the phyA grown in R light and phyB grown in FR light in comparison to the other mutants. The ACS activity coincided with the ethylene production in the phyA and the phyB grown in R light and FR light, respectively. These results suggest that the Pfr form of phyB in R light and the Pr form of phyA in FR light increased ethylene production via increasing ACS activity.

피토크롬은 빛을 인지하여 식물의 생장과 발달에 영향을 미치고, 식물호르몬인 에틸렌은 식물의 줄기 뿌리의 생장을 조절한다. 본 연구는 phyA, phyB and phyAB와 같은 애기장대의 피토크롬 돌연변이체를 이용하여 다양한 빛 조건(암소, white light, red light, far red light)에서 하배축의 생장과 굴중성 반응을 측정하였다. 모든 빛 조건에서 돌연변이체 phyAB는 다른 돌연변이체와 wild type (WT)보다 생장과 굴중성 반응이 가장 촉진되었다. Red light (R)에서 phyB가 phyA보다 굴중성 반응이 촉진되었으나 far red light (FR)에서는 phyB가 phyA보다 굴중성 반응이 억제되었다. 하배축의 생장도 굴중성 반응과 같은 양상으로 조절되었다. 피토크롬의 작용을 설명하기 위하여 에틸렌 생성과 in vitro ACS, ACO 활성을 측정하였다. White light에서 돌연변이체보다 WT에서 에틸렌 생성이 촉진되었다. 그러나 R에서 키운 phyA와 FR에서 키운 phyB에서 에틸렌 생성이 촉진되어 WT와 비슷한 생성량을 보였다. ACS 활성도 에틸렌 생성량의 양상과 일치하였다. 이 결과는 R에서는 phyB의 Pr 형태가, 그리고 FR에서는 phyA의 Pfr 형태가 에틸렌 생성을 조절하여 하배축의 생장과 굴중성 반응을 조절한다는 가능성을 제시한다.

Keywords

References

  1. Bashline, L., Lei, L., Li, S. and Gu, Y. 2014. Cell wall, cytoskeleton, and cell expansion in higher plants. Mol. Plant 7, 586-600. https://doi.org/10.1093/mp/ssu018
  2. Boccalandro, H. E., De Simone, S. N., Bermann-Honsberger, A., Schepens, I., Fankhause, C. and Casal, J. J. 2008. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. Plant Physiol. 146, 108-115.
  3. Boccalandro, H. E., Rugnone, M. L., Moreno, J. E., Ploschuk, E. L., Serna, L., Yanovsky, M. J. and Casal, J. J. 2009. Phytochrome B enhances photosynthesis at the expense of water- use efficiency in Arabidopsis. Plant Physiol. 150, 1083- 1092. https://doi.org/10.1104/pp.109.135509
  4. Chen, M., Chory, J. and Fankhauser, C. 2004. Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
  5. Clack, T., Mathews, S. and Sharrock, R. A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413-427. https://doi.org/10.1007/BF00043870
  6. Correll, M. J. and Kiss, J. Z. 2002. Interactions between gravitropism and phototropism in plants. J. Plant Growth Regul. 21, 89-101. https://doi.org/10.1007/s003440010056
  7. Correll, M. J. and Kiss, J. Z. 2005. The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol. 46, 317-323. https://doi.org/10.1093/pcp/pci038
  8. Devlin, P. F., Robson, R. H., Patel, S. R., Goosey, L., Sharrock, R. A. and Whitelam, G. C. 1999. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 119, 909-915. https://doi.org/10.1104/pp.119.3.909
  9. Franklin, K. A. and Quail, P. H. 2009. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61, 11-24.
  10. Franklin, K. A., Praekelt, U., Stoddart, W. M., Billingham, O. E., Halliday, K. J. and Whitelam, G. C. 2003. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol. 131, 1340-1346. https://doi.org/10.1104/pp.102.015487
  11. Franklin, K. A. and Whitelam, G. C. 2004. Light signals, phytochromes and cross-talk with other environmental cues. J. Exp. Bot. 55, 271-276.
  12. Harrison, M. and Pickard, B. G. 1986. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls. Plant Physiol. 80, 592-595. https://doi.org/10.1104/pp.80.2.592
  13. Hennig, L., Stoddart, W. M., Dieterle, M., Whitelam, G. C. and Schafer, E. 2002. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128, 194-200. https://doi.org/10.1104/pp.010559
  14. Kim, K., Shin, J., Lee, S. H., Kweon, H. S., Maloof, J. N. and Choi, G. 2011. Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplast through phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA 108, 1729-1734. https://doi.org/10.1073/pnas.1011066108
  15. Kim, J., Song, K., Park, E., Kim, K., Bae, G. and Choi, G. 2016. Epidermal phytochrome B inhibits hypocotyl negative gravitropism non-cell autonomously. Plant Cell 28, 2270- 2785.
  16. Kim, S. Y., Kim, Y. K., Kwon, K. S. and Kim, K. W. 2000. Action of malformin A1 on gravitropic curvature in primary roots of maize (Zea mays L.). J. Plant Biol. 43, 183-188. https://doi.org/10.1007/BF03030417
  17. Liscum, E. and Hangarter, R. P. 1993. Genetic evidence that the red-absorbing form of phytochrome B modulates gravitropism in Arabidopsis thaliana. Plant Physiol. 103, 15-19. https://doi.org/10.1104/pp.103.1.15
  18. Ma, Q., Wang, X., Sun J. and Mao, T. 2017. Coordinated regulation of hypocotyl cell elongation by light and ethylene through a microtubule destabilizing protein. Plant Physiol. 176, 678-690.
  19. Mekhedov, S. L. and Kende, H. 1996. Submergence enhances expression of a gene encoding 1-aminocyclopropane-1- carboxylate oxidase in deepwater rice. Plant Cell Physiol. 37, 531-537. https://doi.org/10.1093/oxfordjournals.pcp.a028976
  20. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Nagatani, A. 2004. Light-regulated nuclear localization of phytochromes. Curr. Opin. In Plant Biol. 7, 708-711. https://doi.org/10.1016/j.pbi.2004.09.010
  22. Park, J. H., Lee, S. S., Woo, S. H. and Kim, S. Y. 2012. Effect of light on root growth and gravitropism response of phytochrome mutants of Arabidopsis. J. Life Sci. 22, 681-686. https://doi.org/10.5352/JLS.2012.22.5.681
  23. Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J. and Benkova, E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport- dependent auxin distribution. Plant Cell 19, 2197-2212. https://doi.org/10.1105/tpc.107.052126
  24. Sharrock, R. A. and Quail, P. H. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Gene Dev. 3, 1745-1757. https://doi.org/10.1101/gad.3.11.1745
  25. Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H. and Furuya, M. 2001. Isolation and characterization of rice phytochrome A mutants. Plant Cell. 13, 521-534. https://doi.org/10.1105/tpc.13.3.521
  26. Tao, Y., Ferrer, J. L., Ljung, K., Pojer, F., Hong, F., Long, J. A. and Li, L. 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164-176. https://doi.org/10.1016/j.cell.2008.01.049
  27. Van de Poel, B., Smet, D. and Van Der Straete, D. 2015. Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiol. 169, 61-72. https://doi.org/10.1104/pp.15.00724
  28. Wheeler, R. M., White, R. G. and Salisbury, F. B. 1986. Gravitropism in higher plant shoot. IV. Further studies on participation of ethylene. Plant Physiol. 82, 534-542. https://doi.org/10.1104/pp.82.2.534
  29. Woeste, K. E., Ye, C. and Kieber, J. J. 1999. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119, 521-529. https://doi.org/10.1104/pp.119.2.521
  30. Woltering, E. J., Balk, P. A., Nijenhuis-deVries, M. A., Faivre, M., Ruys, G., Somhorst, D. Philosoph-Hadas, S. and Friedman, H. 2005. An auxin-responsive 1-aminocyclopropane- 1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems. Planta 220, 403-413. https://doi.org/10.1007/s00425-004-1359-6
  31. Woo, S. H., Oh, S. E., Kim, J. S., Mullen, J. L., Hangarter, R. P. and Kim, S. Y. 2008. Root gravitropic response of phytochrome mutant (phyAB) in Arabidopsis. J. Life Sci. 18, 148-153. https://doi.org/10.5352/JLS.2008.18.2.148
  32. Yu, Y. and Huang, R. 2017. Integration of ethylene and light signaling affects hypocotyl growth in Arabidopsis. Front Plant Sci. 8, 57. doi: 10.3389/fpls.2017.00057.