DOI QR코드

DOI QR Code

Development of Ridge Regression Model of Pollutant Load Using Runoff Weighted Value Based on Distributed Curve-Number

분포형 CN 기반 토지피복별 유출가중치를 이용한 오염부하량 능형회귀모형 개발

  • Song, Chul Min (Dept. of Policy for Watershed Management, The Policy Council for Paldang Watershed) ;
  • Kim, Jin Soo (Dept. of Agricultural and Rural Engineering, Chungbuk National University)
  • Received : 2017.10.24
  • Accepted : 2018.01.05
  • Published : 2018.01.31

Abstract

The purpose of this study was to develop a ridge regression (RR) model to estimate BOD and TP load using runoff weighted value. The concept of runoff weighted value, based on distributed curve-number (CN), was introduced to reflect the impact of land covers on runoff. The estimated runoff depths by distributed CN were closer to the observed values than those by area weighted mean CN. The RR is a technique used when the data suffers from multicollinearity. The RR model was developed for five flow duration intervals with the independent variables of daily runoff discharge of seven land covers and dependent variables of daily pollutant load. The RR model was applied to Heuk river watershed, a subwatershed of the Han river watershed. The variance inflation factors of the RR model decreased to the value less than 10. The RR model showed a good performance with Nash-Sutcliffe efficiency (NSE) of 0.73 and 0.87, and Pearson correlation coefficient of 0.88 and 0.93 for BOD and TP, respectively. The results suggest that the methods used in the study can be applied to estimate pollutant load of different land cover watersheds using limited data.

Keywords

References

  1. Ahmadi-Nedushan, B., A. St-Hilaire, T. B. M. J. Ouarda, L. Bilodeau, E. Robichaud, N. Thiemonge, and B. Bobee, 2007. Predicting river water temperatures using stochastic models: case study of the Moisie River, Hydrological Processes. 21: 21-34. doi: 10.1002/hyp.6353.
  2. Bianchi, F., F. Acri, F. B. Aubry, A. Boldrin, E. Camatti, D. Cassin, and A. Comaschi, 2003. Can plankton communities be considered as bio-indicators of water quality in the Lagoon of Venice?, Marine Pollution Bulletin, 46(8): 964-971. doi: 10.1016/S0025-326X(03)00111-5.
  3. Cleland, B. R., 2002. TMDL development from the "Bottom Up"-Part II: using duration curves to connect the pieces., America's clean water foundation. August 15, 2002. National TMDL Science Policy 2002-WEF Specialty Conference, Phoenix, AZ, USA. doi: 10.2175/193864702785072687.
  4. Deshmukh, D. S., U. C. Chaube, A. E. Hailu, D. A. Gudeta, and M. T. Kassa, 2013. Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfallrunoff data and land slope, J. of Hydrology, 492: 89-101. doi: 10.1016/j.jhydrol.2013.04.001.
  5. ESRI (Environmental Systems Research Institute), 2012. ArcGIS, Redlands, CA, USA.
  6. Hoerl, A. E. and R. W. Kennard, 1970. Ridge regression: biased estimation for non orthogonal problems, Technometrics, 12: 69-82. https://doi.org/10.1080/00401706.1970.10488635
  7. Hoerl, A. E., R. W. Kennard, and K. F. Baldwin, 1975. Ridge regression; some simulations, Communications in Statistics, 4:105-124. doi: 10.1080/03610927508827232.
  8. IBM Corp. 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY, USA.
  9. Isik, S., L. Kalin, J. E. Schoonover, P. Srivastava, and B. G. Lockaby, 2013. Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach, J. of Hydrology, 485: 103-112. doi: 10.1016/j.jhydrol.2012.08.032.
  10. Lee, J. D., S. J. Lee, C. H. Hur, and S. D. Kim, 2011. Extraction of soil wetness information and application to distribution-type rainfall-runoff model utilizing satellite image data and GIS, J. of Korean Society for Geospatial Information System, 19(3): 23-32 (in Korean).
  11. Lima, C. H. R. and U. Lall, 2010. Climate informed monthly streamflow forecasts for the Brazilian hydropower network using a periodic ridge model, J. of Hydrology, 380: 438-449. doi: 10.1016/j.jhydrol.2009.11.016.
  12. Mekanik, F., M., A. Imteaz, S. Gato-Trinidad, and A. Elmahdi, 2013. Multiple regression and artificial neural network for long-term rainfall forecasting using large scale climate modes, J. of Hydrology, 503: 11-21. doi: 10.1016/j.jhydrol.2013.08.035.
  13. MLTM, 2012. Design Flood Estimation Techniques, Ministry of Land Transport and Maritime Affairs (in Korean).
  14. Moon, G. W., J. Y. Yoo, J. H. Ahn, and T. W. Kim, 2014. Comparative analysis of estimation methods for basin averaged effective rainfall using NRCS-CN method, J. of Korean Society of Civil Engineers, 34(2): 493-503 (in Korean). doi: 10.12652/Ksce.2014.34.2.0493.
  15. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, American Society of Agricultural and Biological Engineers, 50: 885-900. doi: 10.13031/2013.23153.
  16. Nash, J. E. and J. V. Sutcliffe, 1970. River flow forecasting through conceptional models part I - A discussion of principles, J. of Hydrology, 10(3): 282-290. doi: 10.1016/0022-1694(70)90255-6.
  17. NDEP (Nevada Division of Environmental Protection), 2003. Load Duration Curve Methodology for Assessment and Total Maximum Daily Load Development.
  18. The R Foundation, 2016. R Ver. 3.2.4, Redlands, CA, USA.
  19. Shih, S. F. and J. C. Gervin, 1980. Ridge regression techniques applied to LANDSAT investigation of water quality in Lake Okeechobee, Journal of the American Water Resources Association, 16(5): 790-796. doi: 10.1111/j.1752-1688.1980.tb02489.x.
  20. Shin, E. S., J. Y. Choi, and D. H. Lee, 2001. Estimation of non-point source pollutant unit-loads in surface runoff considering land-use and basin characteristics, J. KSWQ, 17(2): 137-146 (in Korean).
  21. Suh, H. S., K. S. Yang, N. Y. Kim, H. Y. Kim, and M. K. Kim, 2013. SPSS (PAWS) Regression Analysis 3rd edition. Hannarae Academy, Seoul, Republic of Korea (in Korean).
  22. US EPA, 2007. An approach for using load duration curves in the development of TMDLs, EPA 841-B-07-006:1-68.
  23. Vogel, R. M. and N. M. Fenessey, 1994. Flow-duration curves, 1: New interpretation and confidence intervals, J. of Water Resource Planning and Management, 120(4): 485-504. doi: 10.1061/(ASCE)0733-9496(1994)120:4(485).
  24. Wang, F. and Y. J. Xu, 2008. Development and application of a remote sensing-based salinity prediction model for a large estuarine lake in the US Gulf of Mexico coast, J. of Hydrology, 360: 184-194. doi: 10.1016/j.jhydrol.2008.07.036.