DOI QR코드

DOI QR Code

가장자리 형상의 레이더 반사 면적 해석에서 물리광학기법의 적용 한계

Allowable limit of physical optics in radar cross section analysis of edge shape

  • 투고 : 2017.09.11
  • 심사 : 2017.12.20
  • 발행 : 2018.01.01

초록

항공기의 레이더 반사 면적을 예측하기 위한 수치해석 방법으로 전파기법(Full-wave method) 또는 점근기법(Asymptotic method)이 주로 이용된다. 전파기법은 점근기법에 비하여 상대적으로 정확한 해석결과를 기대할 수 있으나, 점근기법은 수치적으로 효율성이 높아 레이더 반사 면적 해석 시에는 점근 기법이 보다 널리 활용되고 있다. 그러나 점근기법을 이용하여 레이더 반사 면적을 예측할 때 발생하는 오차는 쉽게 예상하기 어렵다. 본 논문에서는 쐐기-원통형 해석 모델을 구성하고, 가장자리 형상을 변화시키면서 모멘트법과 물리광학기법의 레이더 반사 면적 예측 결과를 비교하여 물리광학기법의 적용 한계를 분석한다. 마지막으로 레이더 반사 면적 예측 시 물리광학기법의 적용 한계에 대한 기준을 제시하고자 한다.

As a numerical analysis technique to predict the radar cross section of an aircraft, a full wave method or an asymptotic method is mainly used. The full-wave method is expected to be relatively accurate compared with the asymptotic method. The asymptotic method is numerically efficient, and it is more widely used in the RCS analysis. However, the error that occurs when estimating the RCS using the asymptotic method is difficult to predict easily. In this paper, we analyze the allowable limits of physical optics by constructing a wedge-cylinder model and comparing the RCS prediction results between the method of moment and physical optics while changing the edge shape. Finally, this study proposes a criterion for allowable limit of physical optics in the RCS estimation.

키워드

참고문헌

  1. Ball, R. E., The fundamentals of aircraft combat survivability analysis and design, 2nd Edition, AIAA Education Series, 2003.
  2. Sadiku, O., Numerical techniques in electromagnetics with MATLAB, CRC Press, 2011, pp317-320.
  3. Rao S., Wilton D., and Glisson A., "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Transactions on antennas and propagation, Vol. 30, No. 3, 1982, pp.409-418. https://doi.org/10.1109/TAP.1982.1142818
  4. Harrington R. F., Field Computation by Moment Methods, Oxford University Press., 1996.
  5. Kouyoumjian R. G., "Asymptotic high frequency methods," Proc. IEEE. Vol. 53, NO. 8, 1965, pp864-876. https://doi.org/10.1109/PROC.1965.4065
  6. Ling H., Chou R. C., Lee S. W., "Shoting and Bouncing Rays: Calculating the RCS of an Arbitrarily Shaped Cavity," IEEE Transactions on antennas and propagation, Vol. 37, No. 2, 1989.
  7. Weinmann F., "Ray Tracing With PO/PTD for RCS Modeling of Large Complex Objects," IEEE Transactions on antennas and propagation, Vol. 54, No. 6, 2006, pp.1797-1806. https://doi.org/10.1109/TAP.2006.875910
  8. Piennar C., Odendaal J. W., Joubert J., Smit J. C., and Cilliers J. E., "RCS Validation of Asymptotic Techniques Using Measured Data of an Electrically Large Complex Model Airframe," ACES Journal, vol. 32, no.1, 2017, pp60-67.
  9. Jang M. U., Myong R. S., Jang I. M., Lee D. H., "A Hybrid RCS Analysis Code Based on Physical Optics and Geometrical Optics," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 11, 2014, pp.958-967. https://doi.org/10.5139/JKSAS.2014.42.11.958
  10. Knott, E. F., "A progression of highfrequency RCS prediction techniques," Proceedings of IEEE, Vol. 73, No. 2, 1985, pp.252-264. https://doi.org/10.1109/PROC.1985.13137
  11. Ufimtsev, P., Theory of edge diffraction in electromagnetics, The Institution of Engineering and Technology, 2009.
  12. Kouyoumjian, R. G., and Pathak, P. H., "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1974, pp. 1448-1461. https://doi.org/10.1109/PROC.1974.9651
  13. Jakobus, U., and Landstorfer, F. M., "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 2, 1995, pp. 162-169. https://doi.org/10.1109/8.366378
  14. Wang, X., Wang, C., and Liu, Y., "RCS computation and analysis of target using FEKO," Antennas and Propagation(APCAP), 3rd Asia-Pacific Conference on IEEE, July 2014, pp. 822-825.
  15. Jenn, D. C., Radar and Laser Cross Section Engineering, 2nd Ed.., AIAA Education series, 2005,
  16. Liangliang C., Kuizhi Y., CuiFang X., and Dazhao Y., "RCS numerical smulation of stealth modified three-surface aircraft," International Journal of Aeronautical and Space Sciences, Vol. 17, No. 1, 2016, pp.101-108. https://doi.org/10.5139/IJASS.2016.17.1.101
  17. Chen S., Yue K., Hu B., and Guo R., "Numerical simulation on the radar cross section of variable-sweep wing aircraft," Journal of Aerospace Technology and Management, Vol. 7, No. 2, 2015, pp.170-178. https://doi.org/10.5028/jatm.v7i2.416
  18. Knott, E. F., Shaeffer, J. F., and Tuley, M. T., Radar Cross Secion, Artech House, Inc., 1993.