DOI QR코드

DOI QR Code

Useful Effects of Fumed Silica Nanoparticles in an Ionic Liquid Electrolyte for High Temperature Supercapacitor

고온작동 수퍼커패시터용 이온성 액체 전해질에서의 흄드 실리카의 효과

  • Kim, Dong Won (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Jung, Hyunyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 김동원 (국립경남과학기술대학교 에너지공학과) ;
  • 정현영 (국립경남과학기술대학교 에너지공학과)
  • Received : 2017.11.03
  • Accepted : 2017.11.24
  • Published : 2018.01.27

Abstract

The demand for energy storage devices capable of operating at high temperatures is increasing. In order to operate at high temperatures, a device must have excellent thermal stability and no risk of explosion. Ionic liquids are electrolytes that satisfy the above conditions, and studies on improving their performance have attracted great interest. Here, we report the results of a study on the fabrication of a supercapacitor that has a composite electrolyte prepared by dispersing fumed silica in an ionic liquid. The fumed silica filler exhibits improved ionic conductivity and lower interfacial resistance. In particular, the silica nanoparticles with diameters of 10 nm exhibit better electrochemical properties than fillers of other diameters and have excellent device performance of 33 times higher than the pristine ionic liquid at high temperatures. This study can be used to improve the electrolytes of electrochemical devices, such as the next generation battery or lithium ion battery.

Keywords

References

  1. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520(2009). https://doi.org/10.1039/b813846j
  2. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  3. L. Wei and G. Yushin, Nano Energy, 1, 552 (2012). https://doi.org/10.1016/j.nanoen.2012.05.002
  4. R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang and Y. Lei, Nano Energy, 8, 231 (2014). https://doi.org/10.1016/j.nanoen.2014.06.015
  5. I. Yang, G. Lee and J. C. Jung, Korean J. Met. Mater., 26, 696 (2016). https://doi.org/10.3740/MRSK.2016.26.12.696
  6. W. Lu, K. Henry, C. Turchi and J. Pellegrino, J. Electrochem. Soc., 155, A361 (2008). https://doi.org/10.1149/1.2869202
  7. P. Huang, X. Luo, Y. Peng, N. Pu, M. Ger, C. Yang, T. Wu and J. Chang, Electrochim. Acta, 161, 371 (2015). https://doi.org/10.1016/j.electacta.2015.02.115
  8. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino and F. Soavi, Electrochem. Commun., 6, 566 (2004). https://doi.org/10.1016/j.elecom.2004.04.005
  9. L. Negre, B. Daffos, V. Turq, P. L. Taberna and P. Simon, Electrochim. Acta, 206, 490 (2016). https://doi.org/10.1016/j.electacta.2016.02.013
  10. E. Frackowiak, J. Braz. Chem. Soc., 17, 1074 (2006). https://doi.org/10.1590/S0103-50532006000600003
  11. X. Liu, Z. Wen, D. Wu, H. Wang, J. Yang and Q. Wang, J. Mater. Chem. A, 2, 11569 (2014). https://doi.org/10.1039/C4TA01944J
  12. A. Vioux, L. Viau, S. Volland and J. L. Bideau, C. R. Chim., 13, 242 (2010). https://doi.org/10.1016/j.crci.2009.07.002
  13. Y. Fu, X. Ma, Q. Yang and X. Zong, Mater. Lett., 57, 1759 (2003). https://doi.org/10.1016/S0167-577X(02)01065-0
  14. S. Ramesh and C. Liew, Iran. Polym. J., 21, 273 (2012). https://doi.org/10.1007/s13726-012-0022-5
  15. C. Lu, T. Hoang, T. Doan, H. Zhao, R. Pan, L. Yang, W. Guan and P. Chen, Appl. Energy, 170, 58 (2016). https://doi.org/10.1016/j.apenergy.2016.02.117
  16. S. Ahmad, M,. Deepa and S. A. Agnihotry, Sol. Energy Mater. Sol. Cells, 92, 184 (2008). https://doi.org/10.1016/j.solmat.2007.03.036
  17. Z. Ueno, A. Inaba, M. Kondoh and M. Watanabe, Langmuir, 24, 5253 (2008). https://doi.org/10.1021/la704066v
  18. Product information from http://www.sigmaaldrich.com and https://www.aerosil.com/www2/uploads/productfinder/AEROSIL-TT-600-EN.pdf
  19. H. Y. Jung, M. B. Karimi, M. G. Hahm, P. M. Ajayan and Y. J. Jung, Sci. Rep., 2, 773 (2012).
  20. S. M. Jung, D. L. Mafra, C.-T. Lin, H. Y. Jung and J. Kong, Nanoscale, 7, 4386 (2015). https://doi.org/10.1039/C4NR07564A
  21. P. L. Taberna, P. Simon and J. F. Fauvarque, J. Electrochem. Soc., 150, A292 (2003). https://doi.org/10.1149/1.1543948