DOI QR코드

DOI QR Code

고조파 억제 응용을 위한 광대역 저역 통과 필터 설계

Design of Wideband Low Pass Filter for Harmonic Suppression Applications

  • Yeo, Junho (School of Computer and Communication Engineering/Information and Communication Research Center, Daegu University) ;
  • Lee, Jong-Ig (Division of Mechatronics Engineering, Dongseo University)
  • 투고 : 2017.08.22
  • 심사 : 2017.09.05
  • 발행 : 2018.01.31

초록

본 논문에서는 고조파 억제 응용을 위한 광대역 저역 통과 필터(low pass filter; LPF)에 대한 설계 방법에 대하여 연구하였다. 제안된 광대역 LPF는 동일면 도파관(coplanar waveguide; CPW)의 접지면에 대칭적으로 추가한 4개의 크기가 다른 원형 슬롯 쌍으로 구성된다. 4개의 원형 슬롯 쌍은 결함접지구조 역할을 하며 광대역 저역 통과 특성을 가진다. 직경이 가장 작은 원형 슬롯이 포트 1 측에 위치하고 포트 2측으로 가면서 직경이 커지는 형태로 배치하였다. 각각의 원형 슬롯의 저역 통과 특성을 제안된 광대역 LPF와 비교하였다. 최종 설계된 LPF를 FR4 기판 상에 제작하고 특성을 실험한 결과, 측정된 S11 특성은 1.89-20.00 GHz 대역에서 -3.3 dB 이상을 유지하였고, S21 특성은 2.66-20.00 GHz 대역에서 -21.4 dB 이하를 유지하였다.

In this paper, a design method for a wideband LPF for harmonic suppression applications is investigated. The proposed wideband LPF is comprised of four circular slot pairs with different diameters, which are added symmetrically in the ground plane of a CPW transmission line. Four circular slot pairs act as a defected ground structure and provide a wideband low pass characteristic. The circular slot with the smallest diameter is located at the side of port 1, and the diameter of the circular slot is increased as it goes toward port 2. The low pass characteristics of each circular slot are compared with the proposed wideband LPF. The final designed LPF was fabricated on FR4 substrate, and its characteristics were tested. The measured S11 characteristic was maintained at over -3.3 dB in the frequency range of 1.89-20.00 GHz band, whereas the S21 characteristic was less than -21.4 dB in the frequency range of 2.66-20.00 GHz.

키워드

참고문헌

  1. J. Wan, H. Cai and K. Zhou, "Industrie 4.0: enabling technologies," Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things, pp. 135-140, Jan. 2015.
  2. A. Uchida, S. Shimokawa, K. Matsui, and H. Oshima, "Three-dimensional wireless power transfer method to realize efficient charging of IoT devices," FUJITSU Science & Technology Journal, vol. 53, no. 2, pp. 51-56, Feb. 2017.
  3. COST Action IC1301 Team, "Europe and the future for WPT : European contributions to wireless power transfer technology," IEEE Microwave Magazine, vol. 18, no. 4, pp. 56-87, Jun. 2017. https://doi.org/10.1109/MMM.2017.2680078
  4. R. Shadid, S. Noghanian and A. Nejadpak, "A literature survey of wireless power transfer," 2016 IEEE International Conference on Electro Information Technology (EIT), pp. 782-787, 2016.
  5. C. R. Valenta and G. D. Durgin, "Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems," IEEE Microwave Magazine, vol. 15, no. 4, pp. 108-120, Jun. 2014. https://doi.org/10.1109/MMM.2014.2309499
  6. S. Kwon, H. K. Yoon, and Y. J. Yoon, "Harmonic tuning antennas using slots and short-pins," IEEE Antennas and Propagation Society International Symposium, vol. 1, pp. 118-121, 2001.
  7. Y. Horii and M. Tsutsumi, "Harmonic control by photonic bandgap on microstrip patch antenna," IEEE Microwave and Guided Wave Letters, vol. 9, no. 1, pp. 13-15, Jan. 1999. https://doi.org/10.1109/75.752109
  8. Y. Q. Fu, G. H. Zhang and N. C. Yuan, "A novel PBG coplanar waveguide," IEEE Microwave and Wireless Components Letters, vol. 11, no. 11, pp. 447-449, Nov. 2001. https://doi.org/10.1109/7260.966037
  9. X. C. Lin and L. T. Wang, "A broadband CPW-fed loop slot antenna with harmonic control," IEEE Antennas and Wireless Propagation Letters, vol. 2, no. 1, pp. 323-325, 2003. https://doi.org/10.1109/LAWP.2003.822202
  10. J. K. Xiao, Y. F. Zhu and J. S. Fu, "Non-uniform DGS low pass filter with ultra-wide stopband," 9th International Symposium on Antennas, Propagation and EM Theory, pp. 1216-1219, 2010.
  11. J. Yeo and J. I. Lee, "Compact CPW-fed half-ring-shaped slot antenna for harmonic suppression applications," Microwave and Optical Technology Letters, vol. 57, no. 5, pp. 1102-1104, May 2015. https://doi.org/10.1002/mop.29022