References
- Affentranger F (1991). The convex hull of random points with spherically symmetric distributions, Rendiconti del Seminario Matematico Universita e Politecnico di Torino, 49, 359-383.
- Asimit AV, Furman E, and Vernic R (2010). On a multivariate Pareto distribution, Insurance: Mathematics and Economics, 46, 308-316. https://doi.org/10.1016/j.insmatheco.2009.11.004
- Azzalini A and Capitanio A (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 65, 367-389. https://doi.org/10.1111/1467-9868.00391
- Barany I and Vu V (2007). Central limit theorems for Gaussian polytopes, The Annals of Probability, 35, 1593-1621. https://doi.org/10.1214/009117906000000791
- Barber CB, Dobkin DP, and Huhdanpaa H (1996). The Quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software (TOMS), 22, 469-483. https://doi.org/10.1145/235815.235821
- Barnett V (1976). The ordering of multivariate data, Journal of the Royal Statistical Society. Series A (General), 139, 318-355.
- Carpenter M and Diawara N (2007). A multivariate gamma distribution and its characterizations, American Journal of Mathematical and Management Sciences, 27, 499-507.
- Cook RD (1979). Influential observations in linear regression, Journal of the American Statistical Association, 74, 169-174. https://doi.org/10.1080/01621459.1979.10481634
- Cover T and Gamal AE (1983). An information - theoretic proof of Hadamard's inequality (Corresp.), IEEE Transactions on Information Theory, 29, 930-931. https://doi.org/10.1109/TIT.1983.1056751
- Fang KT, Kotz S, and Ng KW (1990). Symmetric Multivariate and Related Distributions, MA Springer US, Boston.
- Fawcett T and Niculescu-Mizil A (2007). PAV and the ROC convex hull, Machine Learning, 68, 97-106. https://doi.org/10.1007/s10994-007-5011-0
- Hug D (2013). Random polytopes. In Spodarev E (eds) Stochastic Geometry, Spatial Statistics and Random Fields, Lecture Notes in Mathematics, (Vol. 2068, pp. 205-238). Springer-Verlag, Berlin-Heidelberg.
- Hug D and Reitzner M (2005). Gaussian polytopes: variances and limit theorems, Advances in Applied Probability, 37, 297-320. https://doi.org/10.1017/S0001867800000197
- Lim J and Won JH (2012). ROC convex hull and nonparametric maximum likelihood estimation, Machine Learning, 88, 433-444. https://doi.org/10.1007/s10994-012-5290-y
- Ng CT, Lim J, Lee KE, Yu D, and Choi S (2014). A fast algorithm to sample the number of vertexes and the area of the random convex hull on the unit square, Computational Statistics, 29, 1187-1205.
- Ollila E, Oja H, and Croux C (2003). The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies, Journal of Multivariate Analysis, 87, 328-355. https://doi.org/10.1016/S0047-259X(03)00045-9
- Renyi A and Sulanke R (1963). Uber die konvexe Hulle von n zufallig gewahlten Punkten, Zeitschrift Fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2, 75-84. https://doi.org/10.1007/BF00535300
- Renyi A and Sulanke R (1964). Uber die konvexe Hulle von n zufallig gewahlten Punkten, Zeitschrift Fur Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 3, 138-147.
- Shao J (2003). Mathematical Statistics (2nd ed), Springer, New York.
- Son W, Ng CT, and Lim J (2015). A new integral representation of the coverage probability of a random convex hull, Communications of Statistical Applications and Methods, 22, 69-80. https://doi.org/10.5351/CSAM.2015.22.1.069
- Zhao J and Kim HM (2016). Power t distribution, Communications for Statistical Applications and Methods, 23, 321-334. https://doi.org/10.5351/CSAM.2016.23.4.321