References
- Agresti A (2002). Categorical Data Analysis (2nd ed), Wiley and Sons, New York.
- Booth JG, Casella G, Friedl H, and Hobert JP (2003). Negative binomial loglinear mixed models, Statistical Modelling, 3, 179-191. https://doi.org/10.1191/1471082X03st058oa
- Breslow NE and Clayton DG (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
- Choi J and Lee K (2017). Poisson linear mixed models with ARMA random effects covariance matrix, Journal of the Korean Data & Information Science Society, 28, 659-668.
- Diggle PJ, Heagerty P, Liang KY, and Zeger S (2002). Analysis of Longitudinal Data (2nd ed), Oxford University Press, Oxford.
- Faught E, Wilder BJ, Ramsay RE, Reife RA, Kramer LD, Pledger GW, and Karim RM (1996). Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages, Neurology, 46, 1684-1690. https://doi.org/10.1212/WNL.46.6.1684
- Han EJ and Lee K (2016). Dynamic linear mixed models with ARMA covariance matrix, Communications for Statistical Applications and Methods, 23, 575-585. https://doi.org/10.5351/CSAM.2016.23.6.575
- Jowaheer V and Sutradhar BC (2002). Analysing longitudinal count data with overdispersion, Biometrika, 89, 389-399. https://doi.org/10.1093/biomet/89.2.389
- Judge GG, Griffiths WE, Hill RC, and Lee TC (1980). The Theory and Practice of Econometrics, Wiley, New York.
- Lee K (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communications for Statistical Applications and Methods, 20, 235-240. https://doi.org/10.5351/CSAM.2013.20.3.235
- Lee K, Baek C, and Daniels MJ (2017). ARMA Cholesky factor models for longitudinal regression models, Computational Statistics & Data Analysis, 115, 267-280. https://doi.org/10.1016/j.csda.2017.05.001
- Lee K, Lee J, Hagan J, and Yoo JK (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
- Lee K and Sung S (2014). Autoregressive Cholesky factor model for marginalized random effects model, Communications for Statistical Applications and Methods, 21, 169-181. https://doi.org/10.5351/CSAM.2014.21.2.169
- Lee K and Yoo JK (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics and Data Analysis, 80, 111-116.
- Molenberghs G and Verbeke G (2005). Models for Discrete Longitudinal Data, Springer, New York.
- Molenberghs G, Verbeke G, and Demetrio CGB (2007). An extended random-effects approach to modeling repeated, overdispersed count data, Lifetime Data Analysis, 13 513-531. https://doi.org/10.1007/s10985-007-9064-y
- Nam S and Lee K (2017). Comparison of the covariance matrix for general linear model, The Korean Journal of Applied Statistics, 30, 103-117. https://doi.org/10.5351/KJAS.2017.30.1.103
- Niederreiter H (1992). Random Number Generation and Quasi-Monte Carlo Methods, Siam, Philadelphia, Pennsylvania.
- Pan J and MacKenzie G (2003). On modelling mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
- Pan J and Thompson R (2007). Quasi-Monte Carlo estimation in generalized linear mixed models, Computational Statistics & Data Analysis, 51, 5765-5775. https://doi.org/10.1016/j.csda.2006.10.003
- Pourahmadi M (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
- Pourahmadi M (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435. https://doi.org/10.1093/biomet/87.2.425
- Pourahmadi, M. (2011). Covariance estimation: The GLM and regularization perspectives, Statistical Science, 26, 369-387. https://doi.org/10.1214/11-STS358
- Thall PF and Vail SC (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671.
- Wuertz D (2005). fOptions: Financial Software Collection-fOptions. R package version 220.10063. (http://www.rmetrics.org).
- Zhang W and Leng C (2012). A moving average Cholesky factor model in covariance modelling for longitudinal data, Biometrika, 99, 141-150. https://doi.org/10.1093/biomet/asr068