DOI QR코드

DOI QR Code

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung (Department of Statistics, Sungkyunkwan University) ;
  • Lee, Keunbaik (Department of Statistics, Sungkyunkwan University)
  • Received : 2017.10.16
  • Accepted : 2017.12.20
  • Published : 2018.01.31

Abstract

Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

Keywords

References

  1. Agresti A (2002). Categorical Data Analysis (2nd ed), Wiley and Sons, New York.
  2. Booth JG, Casella G, Friedl H, and Hobert JP (2003). Negative binomial loglinear mixed models, Statistical Modelling, 3, 179-191. https://doi.org/10.1191/1471082X03st058oa
  3. Breslow NE and Clayton DG (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
  4. Choi J and Lee K (2017). Poisson linear mixed models with ARMA random effects covariance matrix, Journal of the Korean Data & Information Science Society, 28, 659-668.
  5. Diggle PJ, Heagerty P, Liang KY, and Zeger S (2002). Analysis of Longitudinal Data (2nd ed), Oxford University Press, Oxford.
  6. Faught E, Wilder BJ, Ramsay RE, Reife RA, Kramer LD, Pledger GW, and Karim RM (1996). Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages, Neurology, 46, 1684-1690. https://doi.org/10.1212/WNL.46.6.1684
  7. Han EJ and Lee K (2016). Dynamic linear mixed models with ARMA covariance matrix, Communications for Statistical Applications and Methods, 23, 575-585. https://doi.org/10.5351/CSAM.2016.23.6.575
  8. Jowaheer V and Sutradhar BC (2002). Analysing longitudinal count data with overdispersion, Biometrika, 89, 389-399. https://doi.org/10.1093/biomet/89.2.389
  9. Judge GG, Griffiths WE, Hill RC, and Lee TC (1980). The Theory and Practice of Econometrics, Wiley, New York.
  10. Lee K (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communications for Statistical Applications and Methods, 20, 235-240. https://doi.org/10.5351/CSAM.2013.20.3.235
  11. Lee K, Baek C, and Daniels MJ (2017). ARMA Cholesky factor models for longitudinal regression models, Computational Statistics & Data Analysis, 115, 267-280. https://doi.org/10.1016/j.csda.2017.05.001
  12. Lee K, Lee J, Hagan J, and Yoo JK (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
  13. Lee K and Sung S (2014). Autoregressive Cholesky factor model for marginalized random effects model, Communications for Statistical Applications and Methods, 21, 169-181. https://doi.org/10.5351/CSAM.2014.21.2.169
  14. Lee K and Yoo JK (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics and Data Analysis, 80, 111-116.
  15. Molenberghs G and Verbeke G (2005). Models for Discrete Longitudinal Data, Springer, New York.
  16. Molenberghs G, Verbeke G, and Demetrio CGB (2007). An extended random-effects approach to modeling repeated, overdispersed count data, Lifetime Data Analysis, 13 513-531. https://doi.org/10.1007/s10985-007-9064-y
  17. Nam S and Lee K (2017). Comparison of the covariance matrix for general linear model, The Korean Journal of Applied Statistics, 30, 103-117. https://doi.org/10.5351/KJAS.2017.30.1.103
  18. Niederreiter H (1992). Random Number Generation and Quasi-Monte Carlo Methods, Siam, Philadelphia, Pennsylvania.
  19. Pan J and MacKenzie G (2003). On modelling mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
  20. Pan J and Thompson R (2007). Quasi-Monte Carlo estimation in generalized linear mixed models, Computational Statistics & Data Analysis, 51, 5765-5775. https://doi.org/10.1016/j.csda.2006.10.003
  21. Pourahmadi M (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
  22. Pourahmadi M (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435. https://doi.org/10.1093/biomet/87.2.425
  23. Pourahmadi, M. (2011). Covariance estimation: The GLM and regularization perspectives, Statistical Science, 26, 369-387. https://doi.org/10.1214/11-STS358
  24. Thall PF and Vail SC (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671.
  25. Wuertz D (2005). fOptions: Financial Software Collection-fOptions. R package version 220.10063. (http://www.rmetrics.org).
  26. Zhang W and Leng C (2012). A moving average Cholesky factor model in covariance modelling for longitudinal data, Biometrika, 99, 141-150. https://doi.org/10.1093/biomet/asr068