DOI QR코드

DOI QR Code

Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest

핑거프린트와 랜덤포레스트 기반 실내 위치 인식 시스템 설계와 구현

  • Lee, Sunmin (Department of Electronic Display Engineering, Hoseo University) ;
  • Moon, Nammee (Department of Electronic Display Engineering, Hoseo University)
  • 이선민 (호서대학교 컴퓨터정보공학부) ;
  • 문남미 (호서대학교 컴퓨터정보공학부)
  • Received : 2017.12.12
  • Accepted : 2018.01.10
  • Published : 2018.01.30

Abstract

As the number of smartphone users increases, research on indoor location recognition service is necessary. Access to indoor locations is predominantly WiFi, Bluetooth, etc., but in most quarters, WiFi is equipped with WiFi functionality, which uses WiFi features to provide WiFi functionality. The study uses the random forest algorithm, which employs the fingerprint index of the acquired WiFi and the use of the multI-value classification method, which employs the receiver signal strength of the acquired WiFi. As the data of the fingerprint, a total of 4 radio maps using the Mac address together with the received signal strength were used. The experiment was conducted in a limited indoor space and compared to an indoor location recognition system using an existing random forest, similar to the method proposed in this study for experimental analysis. Experiments have shown that the system's positioning accuracy as suggested by this study is approximately 5.8 % higher than that of a conventional indoor location recognition system using a random forest, and that its location recognition speed is consistent and faster than that of a study.

최근 스마트폰 사용자가 늘어남에 따라 실내 위치인식 서비스에 대한 연구의 중요성이 증가하고 있다. 실내 위치인식에는 주로 WiFi, Bluetooth 등이 연구되고 있으나, 본 연구에서는 대부분의 실내 공간에 설치되어 있고 스마트폰에 WiFi 기능이 탑재되어 있어 접근성이 좋은 WiFi를 사용한다. 본 연구에서는 수집된 WiFi의 수신신호세기를 이용하는 핑거프린트 기술과 다변량 분류법 중 Ensemble learning method인 랜덤포레스트 알고리즘을 사용한다. 핑거프린트의 데이터로는 수신신호세기와 더불어 Mac주소를 사용해 총 4개의 라디오 맵을 만들어 사용하였다. 실험은 제한된 실내공간에서 진행하였고 실험분석을 위해 본 연구에서 제안하는 방법과 유사한 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템과 비교 분석하였다. 실험 결과 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템보다 본 연구에서 제안하는 시스템의 위치인식 정확도가 약 5.8% 높고 학습 데이터 개수에 상관없이 위치인식 속도가 일정하게 유지 되며 기존 방식 보다 더 빠름을 입증하였다.

Keywords

References

  1. D. Han, and S. Jung, "global indoor location recognition and indoor /outdoor integrated navigation system," The Journal of The Korean Institute of Communication Sciences, Vol.32, No.2, pp. 89-97, January 2015.
  2. "Status of Wireless Communication Service Statistics," Ministry of science and ICT, Aug 2017, http://msip.go.kr/SYNAP/skin/doc.html?fn=650ecd0147b4ea3d5adceac21064974f&rs=/SYNAP/sn3hcv/result/201801/
  3. J. Im, E. Lee, H. Kim, and K. Kim, "Image Grouping Technology based on Camera Sensors for Efficient Stitching of Multiple Images", The Journal of Broadcast Engineering, Vol.22, No.6, Nov 2017.
  4. J. Kim, G. Jeong, Y. Hwang, P. Park, S. Park, and K. Kim, "Video Similarity Generating Algorithm Improving the Speed of Various Multi-Angle Image Composition", Summer Conference of the Korean Society of Broad Engineers, Jeju, Korea, pp.399-402. June 2016.
  5. S. Park, "Trends in Indoor Location and Service Development," Electronics and Telecommunications Research Institute, Vol.34, No.4, pp.3-9, April 2017.
  6. S. Park, Y. Cho, M. Ji, and J. Kim, "A Study on the trend of LBS technology and market," Electronics and Telecommunications Research Institute, Dec 2015.
  7. M. Kim, B. Kim, Y. Ko, and K. Bang, "Indoor Location Tracking System of Low Energy Beacon using Gaussian Filter," The Journal of Korean Institute of Information Technology, Vol.14, No.6, pp.67-74, 2016.
  8. C. Yoon, T. Kim, H. Kim, and Y. Hong, "Indoor Positioning Using RFID Technique," Journal of the Korea Institute of Information and Communication Engineering, Vol.20, No.1, pp.207-214, 2016. https://doi.org/10.6109/jkiice.2016.20.1.207
  9. S. Choi, H. Park, S. Lee, M. Son, Y. Koo, K. Park, and T. Kim, "An indoor location recognition scheme combining the triangulation method and fingerprinting," Korean Institute of Information Scientists and Engineers, Vol.38, No.2, pp.112-114, 2011.
  10. T. Kim and D. Lee, "The Indoor Localization Algorithm using the Difference Means based on Fingerprint in Moving Wi-Fi Environment," The Journal of Korean Institute of Communications and Information Sciences, Vol.41, No.11, pp.1463-1471, 2016. https://doi.org/10.7840/kics.2016.41.11.1463
  11. S. Son, Y. Park, B. Kim, and Y. Baek, "Wi-Fi Fingerprint Location Estimation System Based on Reliability," The Journal of Korean Institute of Communications and Information Sciences, Vol.38, No.6, pp.531-539, 2013.
  12. J. Kim and N. Moon, "Multiple Object Tracking and Identification System Using CCTV and RFID," Korea Information Processing Society (KIPS), Vol.6, No.2, pp.51-58, 2017.
  13. J. Jeong, K. Jang, and J. Kim, "Target Classification Method Using Random Forest and Genetic Algorithm," Conference of the Proceeding of The Institue of Elec. and Info. Engineers, Daegu, Korea, pp.601-604, 2016.
  14. R. Malhotra, R. Jangra, "Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques," Journal of Information Processing System (JIPS), pp.778-804, Aug 2017.
  15. J. Choi, W. Ahn, and B. Seo, "An Efficient Classification of Digitally Modulated Signals Using Bandwidth Estimation," Journal of broadcast engineering, pp.257-260, Vol.22, No.2, Mar 2017. https://doi.org/10.5909/JBE.2017.22.2.257