DOI QR코드

DOI QR Code

프레임 율 향상을 위한 분산 및 적응적 탐색영역을 이용한 움직임 추정 알고리듬

Motion Estimation Algorithm Using Variance and Adaptive Search Range for Frame Rate Up-Conversion

  • 유송현 (한양대학교 전자컴퓨터통신공학과) ;
  • 정제창 (한양대학교 전자컴퓨터통신공학과)
  • Yu, Songhyun (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Jeong, Jechang (Department of Electronics and Computer Engineering, Hanyang University)
  • 투고 : 2017.11.13
  • 심사 : 2017.11.28
  • 발행 : 2018.01.30

초록

본 논문에서는 움직임 추정을 이용한 새로운 프레임 율 향상 변환 알고리듬을 제안한다. 제안 된 알고리듬은 더 정확한 움직임 벡터를 찾기 위해 움직임 추정 방법에서 오차의 분산을 추가적으로 이용한다. 그런 다음, 이웃 움직임 벡터들의 분산 및 현재 움직임 벡터와 이웃하는 평균 움직임 벡터 간의 분산을 사용하여 잘못 찾아진 움직임 벡터를 탐색한다. 탐색된 벡터들은 8 개의 이웃 움직임 벡터의 가중 합에 의해 수정된다. 또한, 보다 정확한 움직임 벡터를 찾고 동시에 계산 복잡도를 줄일 수 있는 적응적 탐색 영역 결정 알고리듬을 제안한다. 결과적으로, 제안하는 알고리듬은 기존의 알고리듬들에 비해 평균 최대 신호 대 잡음 비 (PSNR)와 구조적 유사도 (SSIM)을 각각 1.44dB 및 0.129까지 향상시켰다.

In this paper, we propose a new motion estimation algorithm for frame rate up-conversion. The proposed algorithm uses the variance of errors in addition to SAD in motion estimation to find more accurate motion vectors. Then, it decides which motion vectors are wrong using the variance of neighbor motion vectors and the variance between current motion vector and neighbor's average motion vector. Next, incorrect motion vectors are corrected by weighted sum of eight neighbor motion vectors. Additionally, we propose adaptive search range algorithm, so we can find more accurate motion vectors and reduce computational complexity at the same time. As a result, proposed algorithm improves the average peak signal-to-noise ratio and structural similarity up to 1.44 dB and 0.129, respectively, compared with previous algorithms.

키워드

참고문헌

  1. C. Cafforio, F. Rocca, and S. Tubaro, "Motion Compensated Image Interpolation," IEEE Trans. Communication, Vol.38, No.2, pp.215-222, February 1990. https://doi.org/10.1109/26.47856
  2. S. Lee, Y. Shin, S. Yang, H. Moon, and R. Park,"Adaptive Motion-Compensated Interpolation For Frame Rate Up-Conversion," IEEE Trans. Consumer Electronics, Vol.48, No.3, pp.444-450, August 2002. https://doi.org/10.1109/TCE.2002.1037026
  3. S. Lee, O. Kwon, and R. Park, "Weighted-Adaptive Motion Compensated Frame Rate Up-Conversion," IEEE Trans. Consumer Electronics, Vol.49, No.3, pp.485-492, August 2003. https://doi.org/10.1109/TCE.2003.1233759
  4. B. Choi, J. Han, C. Kim, and S. Ko, "Motion-Compensated Frame Interpolation Using Bilateral Motion Estimation and Adaptive Overlapped Block Motion Compensation," IEEE Trans. Circuits Syst. Video Technol., Vol.17, No.4, pp.407-416, April 2007. https://doi.org/10.1109/TCSVT.2007.893835
  5. S. Kang, S. Yoo, and Y. Kim, "Dual Motion Estimation for Frame Rate Up-Conversion," IEEE Trans. Circuits Syst. Video Technol., Vol.20, No.12, pp.1909-1914, December 2010. https://doi.org/10.1109/TCSVT.2010.2087832
  6. C. Wang, L. Zhang, Y. He, and Y. Tan, "Frame Rate Up-Conversion Using Trilateral Filtering," IEEE Trans. Circuits Syst. Video Technol., Vol.20, No.6, pp.886-893, March 2010. https://doi.org/10.1109/TCSVT.2010.2046057
  7. D. Yoo, S. Kang, and Y. Kim, "Direction-Select Motion Estimation for Motion-Compensated Frame Rate Up-Conversion," J. Display Technol., Vol.9, No.10, pp.840-850, October 2013. https://doi.org/10.1109/JDT.2013.2263374
  8. U. Kim, and M. Sunwoo, "New Frame Rate Up-Conversion Algorithms with Low Computational Complexity," IEEE Trans. Circuits Syst. Video Technol., Vol.24, No.3, pp.384-393, March 2014. https://doi.org/10.1109/TCSVT.2013.2278142
  9. N. Kim, D. Jun, J. Lee, and Y. Lee, "Blocking Artifacts Detection in Frequency Domain for Frame Rate Up-Conversion," Journal of Broadcast Engineering, Vol.21, No.4, July 2016.
  10. J. Park and J. Jeong, "Frame Rate Up-Conversion Considering the Direction and Magnitude of Identical Motion Vectors," Journal of Broadcast Engineering, Vol.20, No.6, November 2015.
  11. H. Kwon and C. Lee, "Efficient Motion Compensated Interpolation Technique using Image Resizing," Journal of Broadcast Engineering, Vol.18, No.4, July 2013.