DOI QR코드

DOI QR Code

Fast Partition Decision Using Rotation Forest for Intra-Frame Coding in HEVC Screen Content Coding Extension

회전 포레스트 분류기법을 이용한 HEVC 스크린 콘텐츠 화면 내 부호화 조기분할 결정 방법

  • Heo, Jeonghwan (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Jeong, Jechang (Department of Electronics and Computer Engineering, Hanyang University)
  • 허정환 (한양대학교 전기전자공학부) ;
  • 정제창 (한양대학교 전기전자공학부)
  • Received : 2017.11.10
  • Accepted : 2017.12.05
  • Published : 2018.01.30

Abstract

This paper presents a fast partition decision framework for High Efficiency Video Coding (HEVC) Screen Content Coding (SCC) based on machine learning. Currently, the HEVC performs quad-tree block partitioning process to achieve optimal coding efficiency. Since this process requires a high computational complexity of the encoding device, the fast encoding process has been studied as determining the block structure early. However, in the case of the screen content video coding, it is difficult to apply the conventional early partition decision method because it shows different partition characteristics from natural content. The proposed method solves the problem by classifying the screen content blocks after partition decision, and it shows an increase of 3.11% BD-BR and 42% time reduction compared to the SCC common test condition.

본 논문에서는 머신러닝을 기반으로 한 조기분할 결정 방법을 통하여 High Efficiency Video Coding (HEVC) Screen Content Coding (SCC) 부호화 기기의 속도를 향상시키는 방법을 제안한다. 현재 HEVC에서는 최적의 부호화 효율을 내기 위해 쿼드트리 블록 분할 과정을 수행한다. 이 과정은 부호화기의 높은 계산 복잡도를 요구하기 때문에 블록 구조를 조기에 결정하여 부호화 속도를 향상시키는 방법으로 고속화 연구가 이루어져 왔다. 하지만 스크린 콘텐츠 부호화는 기존의 자연영상에 맞춰진 부호화 과정과 다른 블록 분할 특성을 보이기 때문에 기존의 조기분할 결정 연구를 적용하기 어렵다. 제안하는 방법은 먼저 스크린 콘텐츠 블록을 분류해 낸 다음 다시 블록분할을 결정하는 방법으로 문제를 해결하였고 SCC 공통 실험 조건에서 3.11%의 BD-BR 증가와 평균 42%의 부호화 시간 감소를 보였다.

Keywords

References

  1. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, MPEG2014/N14175/VCEGAW90, Joint Call for Proposals for Coding of Screen Content, San Jose, USA, Jan. 2014.
  2. HM-16.16+SCM-8.5 Software, https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.16%2BSCM-8.5 (accessed Nov. 01, 2016).
  3. Joshi, J. Xu, R. Cohen, S. Liu, Y. Ye (editors) "High Efficiency Video Coding (HEVC) Range Extensions text specification: Draft 7, Document JCTVC-Q1005," in ITU-T SG16 WP3 and ISO/IECJTC1/SC29/WG11, Apr. 2014.
  4. F. Duanmu, Z. Ma, and Y. Wang, "Fast CU partition decision using machine learning for screen content compression," in IEEE Int. Conf. Image Process. (ICIP), pp.4972-4976, Sep. 2015.
  5. J. Jang, H. Choi, and J. Kim, "Fast PU Decision Method Using Coding Information of Co-Located Sub-CU in Upper Depth for HEVC," Journal of Broadcast Engineering, Vol.20, No.2, pp.340-347, Mar 2015. https://doi.org/10.5909/JBE.2015.20.2.340
  6. D. Lee, and J. Jeong. "Fast intra coding unit decision for high efficiency video coding based on statistical information," Elsevior Signal Processing Image Communication Vol. 55, pp. 121-129, July. 2017. https://doi.org/10.1016/j.image.2017.03.019
  7. S Jeon, N kim, and B Jeon, "CU Depth Decision Based on FAST Corner Detection for HEVC Intra Prediction," Journal of Broadcast Engineering, Vol.21, No.4, pp.484-492, July 2016. https://doi.org/10.5909/JBE.2016.21.4.484
  8. Y. Zhang, S. Kwong, L. Xu, and G. Jiang, "DIRECT mode early decision optimization based on rate distortion cost property and interview correlation," IEEE Trans. Broadcast, vol. 59, no. 2, pp. 390-398, Jun. 2013. https://doi.org/10.1109/TBC.2013.2253033
  9. J. Chiang, W. Chen, L. Liu, K. Hsu, and W. Lie, "A fast H.264/AVC based stereo video encoding algorithm based on hierarchical two-stage neural classification," IEEE Signal Process, vol. 5, no. 2, pp. 309-320, Apr. 2011.
  10. S. Ryu and J. Kang, "Machine-Learning based Fast Intra Mode Decision Algorithm in HEVC," International Technical Conf. on Circuits/Systems, Computers and Communication (ICT-CSCC), 2017.
  11. W. Han, J. Ahn, J. Lee, "Early Decision of Inter-prediction Modes in HEVC Encoder," Journal of Broadcast Engineering, Vol.20, No.1, pp.171-182, Jan 2015. https://doi.org/10.5909/JBE.2015.20.1.171
  12. S. Tsang, Y. Chan, and W. Siu, "Fast and efficient intra coding techniques for smooth regions in screen content coding based on boundary prediction samples," in Proc. ICASSP, pp. 1409-1413, 2015.
  13. Y. Piao, J. Min, and J. Chen, Encoder Improvement of Unified Intra Prediction, document JCTVC-C207, Jan. 2013.
  14. C. Bei and R. Gray, "An improvement of the minimum distortion encoding algorithm for vector quantization," IEEE Trans. Commun, vol. COM-33, pp. 1132-1133, Oct. 1985.
  15. D. K. Kwon and M. Budagavi, "Fast intra block copy (IntraBC) search for HEVC screen content coding," in IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC, 2014, pp. 9-12.
  16. J. Rodriguez, L. Kuncheva and C. Alonso, "Rotation Forest: A New Classifier Ensemble Method," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1619-1630, Oct. 2006. https://doi.org/10.1109/TPAMI.2006.211
  17. H. Yu, R. Cohen, K. Rapaka, and J. Xu, Common Test Conditions for Screen Content Coding, document JCTVC-T1015, Feb. 2015.
  18. G. Bjontegaard, "Calculation of average PSNR differences between RD curves," Video Coding Experts Group (VCEG), VCEG-M33, Austin, Texas, U.S.A., April, 2001.