DOI QR코드

DOI QR Code

Algorithm for Speed Sign Recognition Using Color Attributes and Selective Region of Interest

칼라 특성과 선택적 관심영역을 이용한 속도 표지판 인식 알고리즘

  • Park, Ki Hun (School of Electronical Electronics and Control Engineering, Changwon National University) ;
  • Kwon, Oh Seol (School of Electronical Electronics and Control Engineering, Changwon National University)
  • 박기훈 (창원대학교 전기전자제어공학부) ;
  • 권오설 (창원대학교 전기전자제어공학부)
  • Received : 2017.09.11
  • Accepted : 2017.11.14
  • Published : 2018.01.30

Abstract

This paper presents a method for speed limit sign recognition in images. Conventional sign recognition methods decreases recognition accuracy because they are very sensitive and include repeated features. The proposed method emphasizes color attributes based on the weighted YUV color space. Moreover, the recognition accuracy can be improved by extracting the local region of interest (ROI) in the candidates. The proposed method uses the Haar features and the Adaboost classifier for recognition. Experimental results confirm that the proposed algorithm is superior to conventional algorithms under various speed signs and conditions.

본 논문에서는 실 도로 영상에서 속도 표지판을 인식하는 방법을 제안한다. 기존의 표지판 인식의 방법들은 조명 변화에 민감하고 반복적인 형태 특징까지 추출하여 인식 성능이 감소하는 단점이 있다. 제안한 방법은 가중치가 적용된 YUV 색상 모델을 이용함으로써 속도 표지판의 색 특성을 강조하였으며 또한 표지판 후보 영역에 관심영역을 국부적으로 제한함으로써 인식 성능을 개선하였다. 이때, 검출과 인식을 위해서는 하 특징을 이용한 아다부스트 분류기를 사용하였다. 제안한 방법을 다양한 속도 및 환경하에서 실험한 결과 기존의 방법들보다 인식의 성능이 향상되었음을 확인하였다.

Keywords

References

  1. S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-Moreno and F. Lopez -Ferreras, "Road-Sign Detection and Recognition Based on Support Vector Machines," IEEE Tran. Intelligent Transportation Systems, Vol. 8, No. 2, pp. 264-278, 2007. https://doi.org/10.1109/TITS.2007.895311
  2. D. Ciresan, U. Meier, J. Masci and J. Schmidhuber, "A committee of neural networks for traffic sign classification," Proc. of the IEEE International Joint Conf. on Neural Networks, pp. 1918-1921, 2011.
  3. FeiXiang Ren, Jinsheng Huang, Ruyi Jiang ancd Reinhard Klette, "General Traffic Sign Recognition by Feature Matching," 24th International Conference on Image and Vision Computing, pp. 409-414, 2009.
  4. Fatin Zaklouta and Bogdan Stanciulescu, "Real-Time Traffic-Sign Recognition Using Tree Classifiers," IEEE Transactions on Intelligent Transportation systems, vol. 13, no. 4, pp 1507-1514, 2012. https://doi.org/10.1109/TITS.2012.2225618
  5. G. JaWon, H. MinCheol, K. Byoung Chul and N. Jae-Yeal, "Real-time Speed-Limit Sign Detection and Recognition using Spatial Pyramid Feature and Boosted Random Forest," 12th International Conference on Image Analysis and Recognition, pp. 437-445, July, 2015.
  6. M. Mathias, R. Timofte, R. Benenson and L.V. Gool, "Traffic sign recognition-How far are we from the solution?," IEEE Int. Con. Neural Networks, pp. 1-8, 2013.
  7. N. Barnes, A Zelinsky and L.S. Fletcher, "Real-time speed sign detection using the radial symmetry detector," IEEE Trans. Intelligent Transportation Systems, pp. 322-332, 2008.
  8. B. Froba, and A. Ernst, "Face Detection with the Modified Census Transform," Proc. of the sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 91-96. 2003.
  9. Y. Aoyagi and T. Asakura. "Detection and recognition of traffic sign in scene image using genetic algorithms and neural networks.," SICE-ANNUAL CONF. pp. 1343-1348, 1996.
  10. D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, "A Committee of Neural Networks for Traffic Sign Classification," International Joint Conference on Neural Networks, San Jose, USA, pp. 1918-1921, 2011.
  11. K. Lim, Y. Hong, Y. Choi, and H. Byun, "Real-time traffic sign recognition based on a general purpose GPU and deep-learning," PLoS ONE, 12(3): e0173317, doi:10.1371/journal. pone.0173317, 2017
  12. S. Kang and D. Han. "Robust vehicle detection in rainy situation with Adaboost using CLAHE," The Journal of Korean Institute of Communications and Information Sciences, vol. 41, no. 12, pp. 1978-1984, 2016. https://doi.org/10.7840/kics.2016.41.12.1978