
406 Sungjin Kim et al. © 2017 ETRI Journal, Volume 39, Number 3, June 2017
https://doi.org/10.4218/etrij.17.0116.0810

Malware propagated via the World Wide Web is one of
the most dangerous tools in the realm of cyber-attacks. Its
methodologies are effective, relatively easy to use, and are
developing constantly in an unexpected manner. As a
result, rapidly detecting malware propagation websites
from a myriad of webpages is a difficult task. In
this paper, we present LoGos, an automated high-
interaction dynamic analyzer optimized for a browser-
based Windows virtual machine environment. LoGos
utilizes Internet Explorer injection and API hooks, and
scrutinizes malicious behaviors such as new network
connections, unused open ports, registry modifications,
and file creation. Based on the obtained results, LoGos can
determine the maliciousness level. This model forms a
very lightweight system. Thus, it is approximately 10 to 18
times faster than systems proposed in previous work. In
addition, it provides high detection rates that are equal to
those of state-of-the-art tools. LoGos is a closed tool that
can detect an extensive array of malicious webpages. We
prove the efficiency and effectiveness of the tool by
analyzing almost 0.36 M domains and 3.2 M webpages on
a daily basis.

Keywords: API hook, Dynamic analysis, DLL injection.

Manuscript received Nov. 14, 2016; revised Apr. 1, 2017; accepted Apr. 9, 2017.
Sungjin Kim (r3dzon3@kaist.ac.kr) is with the Graduate School of Information Security,

School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Rep. of
Korea.

Sungkyu Kim (ormuzd98@ncubelab.com) is with Information Sharing and Analysis Center,
NcubeLab, Seoul, Rep. of Korea.

Dohoon Kim (corresponding author, karmy01@add.re.kr) is with the ITMD, Agency for
Defense Development, Daejeon, Rep. of Korea.

This is an Open Access article distributed under the term of Korea Open Government
License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/news/dataView.do?dataIdx=97).

I. Introduction

Over the years, malware has become increasingly complex.
It infects systems by creating malicious processes or system
files, or by altering code to impede the kernel, firmware, or
hypervisor through “drive-by downloads.” These trends
characterize most current attack techniques.

In particular, these attacks have enabled attackers to launch
advanced and persistent threat attacks while hiding their
identities and infiltrating systems using IP addresses or URLs
in webpages. These attacks are propagated through the web
and spread toward the target location. These attacks, which
target systems of all types, are becoming increasingly common.

For personal users, anti-virus software provides safety to
some extent. However, current anti-virus software installed on
tens of millions of user PCs requires many other resources such
as signatures to detect downloaded malware and protect against
malicious web access. Under these circumstances, these widely
used anti-virus tools cannot prevent current malware attacks
when users surf the Internet or access email because
adversaries propagate malware after verifying whether
antivirus tools can evade malware [1], [2]. These circumstances
allow attackers to bypass a user’s virus detection tool.
Moreover, there exist vast numbers of webpages. Manually
inspecting these webpages is impossible. Thus, we need an
accurate, speedy, and automated malicious webpage detection
system for supporting rapid pattern (or signature) updates.

Despite prior trials on remediating this issue, there is still a
need for a model that effectively addresses both high-speed
scanning and high detection rates. Systems proposed in
previous work [3]–[5] exhibit some limitations in terms of
performance and detection rate.

In an effort to overcome these limitations, our proposed
system utilizes methods similar to those found in other virtual
machine (VM)-based systems. However, compared with
previous models, our model is significantly faster. It is also
proactive and does not wait for a malicious attack on the

LoGos: Internet-Explorer-Based Malicious Webpage Detection

Sungjin Kim, Sungkyu Kim, and Dohoon Kim

ETRI Journal, Volume 39, Number 3, June 2017 Sungjin Kim et al. 407
https://doi.org/10.4218/etrij.17.0116.0810

system. It utilizes dynamic-link libray (DLL) injection-based
API hooking. Although the application programming interface
(API) hooking method is not a new technique, we have
improved the technique to allow it to meaningfully detect
malicious webpages with increased performance and detection
rates.

The main contributions of this study are as follows:
1. We introduce a malicious webpage detection system that is
10 to 18 times faster than those in previous studies.
2. We demonstrate that our efficient approach is applicable to
actual production environments.

The remainder of this paper is organized as follows. We
describe related research in Section II. We provide an overview
of the proposed model in Section III. In Section IV, the
technical details of our implementation are explained.
Section V describes the experimental setup, and reports on the
experimental results. We discuss limitations of our framework
in Section VI. Our conclusions are outlined in Section VII.

II. Related Work

In this research, we analyzed two types of malicious
webpage detection techniques.

In high-interaction dynamic analysis, Capture-HPC [6] and
Anubis [3] enable systematic state-based detection of a client
attack by monitoring file changes and network state transitions.
They are very effective in detecting unknown malware attacks
on clients. Similarly, CWSandbox [7] and Norman Sandbox
[8] provide analysis of malicious behaviors. In particular, in
API hooking with inline code overwriting, CWSandbox
overwrites “six-byte code” for surveillance, including files,
registry entries, events, and handles. These dynamic analysis
systems focus on malware itself, whereas we are concerned
with harmful websites perpetrated through a browser. These
models provide high detection rates; however, the time trade-
off is very high. That is, these dynamic methods involve
intensive methodologies because they are installed, loaded, and
monitored in an unpatched VM-based system. They achieve
high detection rates in environments that run portable
executable files; however, they have considerable limitations
owing to performance issues.

In this regard, new alternatives are needed to overcome
current performance issues. Thus, we adopted an API hooking
technique, but we hooked Internet Explorer (IE) browsers
running in multiple VMs to detect original malicious websites
producing malware.

We monitor the process ID (PID), file creation, and network
connections because malicious websites can spawn new
processes or connect to a remote server. Under this
circumstance, the detection process should be procedural.

Individual processes are not often considered malicious.
LoGos’s heuristic approach is sequentially coded according to
loading processes. To manage these processes, we monitor
PIDs that are created, and determine the upper browser handler
related to those PIDs. To simultaneously achieve this objective,
we maintain a history of file creations and events and store
them in each VM. System call sequences are also compared
against predefined malicious profiles (details in Section IV).

Wepawet [9] performs low-interaction dynamic analysis to
classify malicious code. Thug [5] provides a YARA rule-based
emulator. Wepawet shows difficulties in detecting various web
exploit toolkits. Thug is unstable in landing ActiveXObjects. It
occasionally stops and delays its analysis (we prove this trend
in Section V.) In terms of detection rate and performance, we
hooked IE safely. This hooking did not incur any system
crashes or critical system errors during the experiments, in
which myriads of websites were inspected. Our model hooks
millions of loaded IE browsers, but it is safe. This system is
also secure because we run webpages on a secure container,
and we revert to a new VM image when malicious webpages
are detected. Our detection mode is designed to be deployed in
a structure that can tolerate a performance overhead with
multiple IE browsers and multiple VMs, permitting important
insights into the characteristics of malicious code.

CAMP [10] is built into Chrome and relies on the reputation
data of Google’s Safe Browsing API. ZOZZLE [11] statistically
analyzes unobfuscated codes generated by manipulating the
function in the Jscript.dll library of IE. This approach provides
quick detection and high accuracy, but also provides a low
detection rate for the shell code detection in Flash ActionScripts
and Java applets. In another approach, Blade [12] redirects
browser downloads into a secure zone, but only in the case of
“.exe” file types. It does not support other file types (for example,
scripts). Such studies use the infrastructure of specific browsers
and only identify some malicious characteristics; however, our
approach can be deployed in various browsers and it can validate
a variety of attack types.

To do this, we adopted DLL injection and an API hooking
method. DLL injection is a technique for forcibly inserting and
loading a DLL file within the address space of IE to manipulate
the DLL according to our purposes. This can replace IE with
other types of browsers such as Firefox or Chrome. As in
previous studies, it does not require the modification of a
browser or Windows DLL files. We only need our DLL file.

This method is especially helpful when scanning massive
domains and checking validations. It can indicate whether a
webpage contains malicious code, even when link tags are
obfuscated. For JavaScript deobfuscation, previous studies [5],
[13] used a JavaScript engine (SpiderMonkey [14], PhantomJS
[15], Google V8 [16], PyV8 [17]). Meanwhile, we used IE,

408 Sungjin Kim et al. ETRI Journal, Volume 39, Number 3, June 2017
https://doi.org/10.4218/etrij.17.0116.0810

which is one of the most-used browsers that are targeted by
attackers. Adopting a real browser increases the attack surface
for detection.

III. Architecture

LoGos operates in IE-based VMs. We offer brief information
and sample output for LoGos at this website: https://drive.
google.com/file/d/0Bwjmbj3-p7V_OEVxc3RBcXR6bXM/view

1. Design Overview

In this section, we explain the detailed architecture of LoGos.
Adversaries follow two steps to initiate an attack.

First, they insert redirection links into landing pages that
reach malware distribution webpages, using exploit kits such as
Neutrino, Redkit, or Rig. They then activate the webpages to
exploit the user’s system via Java Applets, Adobe Flash Player,
ActiveX controls, XML, IE, and other Web plugins with
vulnerabilities. Attack attempts to disrupt web users are based
on the exploit kits in webpages [18][20]. These kits enable
users to easily allocate heap memory space. In web attack cases,
this heap spray [21] is still widely used (bypassing ASLR
and DEP [22], [23]). These types of attacks are commonly
implemented in VBScript, ActionScript, and HTML5 [24][27].
In this regard, a detection system should respond to various
exploit kits that are widely used and are newly emerging. To
detect these toolkits, LoGos injects a DLL file when IE is loaded.
Subsequently, the DLL captures artifacts that characterize
malicious activities that occur when an IE is loaded. For instance,

the DLL extracts processes that have suspicious filenames. We
describe the analysis modules in a DLL file. To use the modules,
we adopt the API hooking method.

LoGos’s hooking is unlike a typical one, which manipulates
the memory address of related functions for intercepting events
or messages passed between software components [28].
Meanwhile, we first attach a DLL file and manipulate the API
functions’ addresses in the DLL.

Our hooking follows these steps: i) injection, ii) API function
calls, iii) API hooking, iv) a 5-byte code patch, and v) attack
detection. As shown in Fig. 1, ② LoGos attaches our DLL
file (hook.dll) to each IE (iexplore.exe), and then ③ calls API
functions we want to observe. ① This hooking changes the
workflow from ① to ③. In general, malicious webpages
directly accesses system DLL files via IE; however, when
hooking is applied, the workflow passes through the hook.dll.
These API function accesses via IE are deemed malicious
because general webpages do not call these predefined API
functions via a browser. Under these circumstances, ③ the
injected DLL file is loaded prior to other DLL files when IE is
launched. In the DLL file, we define ④ “a white/blacklist
detection module,” “API function calls,” ⑤ “an API hooking
function with 5-byte code patch,” ⑥ “API function analysis
modules for attack detection,” and an “unhooking module.” In
this hooking, a “precedence procedure” to attach “hook.dll” to
IE is the most important step in the hooking process. From this
injection, hook.dll is considered as one of the system libraries
used by IE browsers.

Injection and hooking are achieved using two files, namely,
logos.exe and hook.dll, respectively. When logos.exe is executed,

Fig. 1. LoGos’s hooking process.

Malicious codes in webpage

Internet explorer

Injection
(attachment)

2

1

3

4 5 6

Created processes

PID 952

IEXPLORE.EXE

cmd.exe

PID 2576

PID 4068

update.exe

API functions loaded in memory

ntdll.ZwResumeThread

ADVAPI32.CreateService

Kernel32.CreateFileW

Kernel32.CreateProcessInternalW

Ws2_32.send

Ws2_32.recv

Hook

BOOL InjectDll(.. dwPID,.. dllName)
{
…
}
int main()
{
…
char runlE[50]=C:\\iexplore.exe;
char dllPath[50]=C:\\hook.dll;
CreateProcess(NULL, runIE,…, &si,
& pi);
InjectDll(pi.dwProcessId, dllPath);
}

BOOL WINAPI DllMain(…)
{
…
if(strProcessName. CompareNo
Case (blacklist) …
if(strProcessName. CompareNo
Case(whitelist)…
LoadLibraryA(Ws2_32.dll):
hook_API(Ws2_32.dll, send,
(PROC)Newsend, g_pSEND)
…
)

BOOL hook_API(LPCTSTR szDllName,
LPCTSTR szFuncName, PROC pfnNew,
PBYTE pOrgBytes)
{
…
//5 byte code patch
memcpy(pOrgBytes, pFunc, 5);
dwAddress=(DWORD)pfnNew-
(DWORD)pFunc- 5;
memcpy(&pBuf[1], &dwAddress, 4);
memcpy(pFunc, pBuf, 5);
…
)

Int WINAPI Newsend(
SOCKET s,
const char* buf,
int len,
int flags
)
{
…
//suspicious port
if(port!= 443)
…
//suspicious analytics
…
}

logos.exe hook.dll

ETRI Journal, Volume 39, Number 3, June 2017 Sungjin Kim et al. 409
https://doi.org/10.4218/etrij.17.0116.0810

it opens a hook.dll with an “rb” option. IE is activated using
CreateProcess(). Then, InjectDll() function attaches hook.dll with
PID of IE to be loaded into IE’s memory address space.

If injection is completed, DllMain() in hook.dll begins. In
DllMain(), we use a black/whitelist detection module and
hook_API() calls. In the DLL, we also define hook_API and
unhook_API functions, and API analysis modules for attack
detection.

There are two detection approaches in terms of timing:
before and after drive-by downloads. That is, antivirus software
is an example that detects malware evidence created after a
drive-by download. By contrast, Thug searches for malicious
footprints prior to drive-by download attacks. This system
mainly tracks the existence of malicious code called “exploit
kits.” Our model focuses on a study that classifies all malicious
symptoms that occur before and after drive-by downloads. To
detect them, LoGos accesses candidate domains, renders them,
and inspects all life cycles during contamination.

Algorithm 1. LoGos Workflow
1: procedure BrowserControl(d, h, r)
2: m_bContinue : bool = true
3: OnRun()
4: GetUrl(out strUrl:string) ← QueueServer
5: DeleteInternetFolder() // Delete cookies
6: BrowserExecute() // Hooked
7: _EnableNTPrivilege(inszPrivilege:unsigned ...)
8: IsWow64(in dwPID : int)
9: InjectDll(in dwPID : int, inszDllName64 : ...)
10: CreateDirectory(strTemp, NULL)
11: T = WaitForSingleObject(pi.hProcess, 15 × 1,000)
12: while do(T == TRUE || BHO == FALSE)
13: store log
14: GetWinHandle(in pid : unsigned)
15: ProcIDFromWnd(in hwnd : HWND)
16: PostMessage(hwnd, WM_CLOSE, 0, 0)
17: ProcessKill(in dwPid : int)
18: ProcessKill(in strProcess : string)
19: end while
20: OnStop()
21: end procedure

Algorithm 1 shows the entire LoGos workflow. In detail,
LoGos obtains a candidate domain (or a URL) from a queue
server. It then deletes cookies and history files in the temporary
folder because adversaries check items in a user’s web
browsing history, such as cookies or IP addresses. Users are
protected against revisits and reinstalls. If these exist, the
malicious webpage does not respond. Thus, we delete cookie
and history information before accessing candidate domains.

After that, multiple IE browsers are executed with each
given domain. When the IE browsers are loaded, our DLL file
is injected into each IE. LoGos then creates a directory folder
and stores all related logs and source code there if attacks are

identified for a 15-s waiting time (we can manipulate the
timeout according to the network environment).

Adversaries often inject obfuscated attack code in webpages
in order to mask its presence. LoGos deobfuscates the contents
via an IE JScript, and the web content is converted to
CSS/DOM format through the parser of a browser engine.
Then, malicious webpages open redirection links, load
vulnerable Java/Flash, create a new process or files, modify the
registry, and attempt to open a new network connection. All of
the opened links (or created processes) are analyzed in terms of
their dynamic behavior. IE plays a critical role in locating
malicious links, whereby API function calls are activated and
LoGos identifies malicious traits within webpages.

A hooked IE renders webpages of accessed domains and
carries out surveillance of all symptoms obtained from the
hidden malicious links. Thus, IE and API hooking help in
distinguishing malicious URLs from benign ones.

LoGos is composed of several parts, including the main code
section for IE landing and browser injection, a DLL file for
global API function hooking and attack surveillance, browser
helper object (BHO), load balancing, and log file creation/file
management. It contains 6,927 lines of code in total. Our
proposed system was developed using C/C++, and includes
some shell script codes for reverting a VM image. It is
deployed on multiple VMs to support in-depth behavioral
monitoring environments. IE affects the detection rate because
it provides a real browser environment.

2. System Platform

Our system was designed on a machine with an Intel®
Xeon® E5-2620 v2 six-core 2.1-GHz Processor, 32-GB
memory, and a 551.5-GB HDD. Our platform allocates
58.57 GB per VM and utilizes almost 26.62 GB per VM. It has
1-Gbps NICs equipped with the 82599 chipset, but uses
100-Mbps connections.

This system is implemented using VMware ESXi 6.0.0 [29];
each VM runs on Windows XP, 7, 8, 10 and other Windows
Platforms. Four VM images are used, and each VM loads
15 IE browsers at a time; 4 GB of RAM is allocated to each
image. Plugins installed on each VM are unpatched versions
such as Java 7.0.100, MS IE 8.0, Adobe Flash Player 15.0.0.167,
and Silverlight 4. One of the properties of our platform is that
various plug-ins can be installed without limitations. The system
uses a RabbitMQ version3.3.5 queue server [30].

To ensure efficient performance, the LoGos system
distributes its workload after multi-instance creation (for
example, 15 browsers per VM). Each of the four VMs
sequentially receives candidate domains from the RabbitMQ
queue, which distributes a fixed subset of candidate domains;

410 Sungjin Kim et al. ETRI Journal, Volume 39, Number 3, June 2017
https://doi.org/10.4218/etrij.17.0116.0810

each VM stores them in a local directory. Each VM executes
this task repeatedly until all domains are read by the multiple
browsers. This platform automatically reboots when the VM is
powered off; that is, it reverts to a specific snapshot if the
Windows OS is compromised while analyzing malicious
webpages.

IV. Implementation

LoGos monitors the following suspicious traces: file creation
and modification, command line execution, registry changes,
and new network connection trials. In this section, we discuss
the implementation of this approach.

1. Initialization

A. Set Configuration

LoGos reads configuration values from each VM; these
include a queue server IP, port, user name, and queue name
obtained from a local config.ini file. It connects to a queue server
and receives a set of domain lists, and stores them in a local
directory. If the received domain lists are used, LoGos reconnects
to a queue server to obtain additional domain lists. This process
is constantly repeated. All VMs look for the same queue server;
however, they use different domain lists based on different queue
names. To manage domains that are suspended because of the
uncertain conditions of browsers on VMs, a queue server is
associated with each VM; this server manages a history of used
domains and sends the remaining domains to each VM.

B. Performance Management

To perform load balancing, LoGos receives the counter
values of the system’s CPU and memory from the CPerfMon
class. The MAX_CPU_USE of LoGos allocates 60 values by
default. If CPU usage exceeds the default value, the system
sleeps for a random number of seconds. In general, this CPU
management affects the performance of the entire system.

C. Browser Loading

LoGos emulates user Internet access. Unlike prior studies [5],
[9], our approach closely simulates a typical user’s Internet
access. Instead of a user entering a URL in IE, LoGos
automatically loads IE browsers as commanding domains such
as “iexplore.exe http://www.domain.com.” In fact, by calling
CreateProcess(), LoGos runs IE (iexplore.exe) using domain
lists stored in a local directory.

We do not face DOM parsing difficulties caused by unsafe
browser engine customization, or problems related to
JavaScript parsing, add-on plugin compiling, and insufficient

functions. This provides optimized safety. Furthermore, our
hooking method provides a lightweight load to IE such that it
renders a total of 60 IE instances on four Windows 7 VM
images simultaneously. This simultaneous rendering enhances
the overall performance.

In the system design for browser loading, we need to
delete CSIDL_COOKIES, CSIDL_INTERNET_CACHE,
and CSIDL_HISTORY. By periodically visiting the same
malicious webpages, adversaries block access to them. They
check the browsing history to deny continuous access. Hence,
we remove this history using the SHGetFolderPath and
FolderDelete functions.

2. Browser Helper Object

To rapidly distinguish malicious domains from the numerous
available domains, an increase in the crawling performance is
required. In this regard, we applied BHO to quickly close the
browsers after the completion of browsing tasks.

Normally, adversaries attack users with tiny files in a short
time because users disconnect their browsers when accessed
websites take a long time to load. In particular, attackers tend to
operate malicious websites for only a short time, and we must
respond to as many websites as possible. In this circumstance,
BHO closes browsers when their loading is finished or when
an HTTP status code 404 is returned. IE waits 15 s to reflect the
maximum loading time. In general, browser loading time is
less than 10 s in benign domain access. However, many
malicious websites execute various covert actions during
loading time. This results in a slight delay compared to benign
webpage access. Thus, to improve the system performance, if

Fig. 2. BHO code example.

1: #define INET_E_RESOURCE_NOT_FOUND INET_NOT
2: #define HTTP_STATUS_NOT_FOUND HTTP_NOT
3: #define HTTP_STATUS_FORBIDDEN FORBIDDEN
4:
5: STDMETHODIMP BHO::Invoke(DISPID dispidMember, ...)
6: {
7: switch(dispidMember)
8: {
9: case DISPID_DOCUMENTCOMPLETE:
10: TerminateProcess(GetCurrentProcess(), 0);
11: break;
12:
13: case DISPID_NAVIGATEERROR:
14: CString strTemp;
15: VARIANT*vt_statuscode=pDispParams->rgvarg[1]. pvarVal;
16: DWORD dwStatusCode = vt_statuscode->lVal;
17:
18: if(m_bIsError && (dwStatusCode == INET_NOT || dwStatusCode ==
HTTP_NOT || dwStatusCode == FORBIDDEN))
19: {
20: HWND hWindowHwnd = GetWinHandle (GetCurrentProcessId());
21: if(hWindowHwnd != NULL)
22: ::PostMessage(hWindowHwnd,WM_CLOSE,0,0);
23: }
24: break;
25: }
26:}

ETRI Journal, Volume 39, Number 3, June 2017 Sungjin Kim et al. 411
https://doi.org/10.4218/etrij.17.0116.0810

an IE browser completes all jobs in less than 15 s, the BHO
immediately closes the browser. LoGos detects a malicious
website within 0.01 s to 15 s in general cases.

As shown in Fig. 2, we close the window of the related IE
handle after calling GetWinHandle() with the current PIDs (for
example, ProcIDFromWnd()). The IE window finishes with
PostMessage(). Otherwise, the BHO can be replaced with
OnDocumentComplete(). All processes are terminated within
1 min after new process creation.

3. API Function Hooking

Our hooking procedure is largely composed of DLL
injection and a 5-byte code patch.

A. DLL Injection

LoGos utilizes DLL injection, which is a technique to insert
custom DLL code (for example, hook.dll) into the address
space of a running process (for example, iexplore.exe).

This DLL injection offers Windows API manipulation,
which allows us to debug them for our purposes. Injection uses
the “hook.dll” pathname and IE PID as parameters. To carry
out this injection process, we follow five steps.

First, we offer certain access rights to perform our tasks. We
adjust privileges with an _EnablePrivilege(SE_DEBUG_
NAME, SE_PRIVILEGE_ENABLED) call including
OpenProcessToken, LookupPrivilegeValue, and
AdjustTokenPrivileges functions.

Second, we call the InjectDll(pi.dwProcessId, dllPath)
function. pi.dwProcessId is the IE PID, and dllPath is the
hook.dll directory pathname.

Third, in the InjectDll function, we open the running process
(iexplor.exe) for injection using the PROCESS_ALL_
ACCESS parameter of OpenProcess(). This function obtains a
handle for the process.

Next, we allocate memory by calling VirtualAllockEx(),
which allocates enough memory to locate a hook.dll path
string. The DLL becomes a virtual protect with the
PAGE_READWRITE parameter. Then, LoGos copies the
DLL path into the allocated memory space of the IE process
using WriteProcessMemory().

Lastly, when LoadLibraryA() is called, it jumps to
the DllMain() of the hook.dll. This is achieved by
GetProcAddress(GetModuleHandle (“kernel32.dll”),
“LoadLibraryA”) and CreateRemoteThread() for running
hook.dll attached to the iexplor.exe.

We also call WaitForSingleObject(hThread, INFINITE) to
wait for a malicious thread. Consequently, injection is a
procedure for calling DllMain() and preparing API hooking
within hook.dll.

B. Code Patch

A code Patch is applied in all threads and API functions that
we observe.

First, to surveil the behaviors of all created threads, we hook
ZwResumeThread of “ntdll.dll.” LoGos obtains the handler of
“ntdll.dll” by calling GetModuleHandle() with the “ntdll.dll”
name. Next, our system obtains the address of the
ZwResumeThread function by calling GetProcAddress(). Then,
we execute a 5-byte code patch (JMP + address) using
memcpy(), which starts at 0xE9 (JMP opcode) with the
memory address of the thread detection module as its
parameter. This “code patch” helps alter an address location to
our surveillance handler (for example, NewZwResumeThread).
This enables us to monitor all threads. We obtain the code
patch address from this formula: Address = address of
NewZwResumeThread function - address of ZwResumeThread
function - 5.

LoGos also hooks other API function addresses of Windows
system DLL files that are mapped with IE (it does not hook API
address in the Import Address Table or Export Address Table).
That is, it hooks the API function address, which is related to the
network, registry, or process, for attack surveillance. Thus, this
model can intercept all malicious information via hook.dll. For
example, it searches the “Ws2_32.send” API function address,
and modifies the 5-byte code of the API function (for example,
MOV EAX, OAD to JMP 10011101). The JMP address
indicates a detection module [for example, Newsend()] for
HTTP GET/POST traffic collection.

Last, LoGos supports the unhook process to revert to
the original address bytes using memcpy(OriginDllAddress,
OrginalByte, 5) when IE terminates tasks.

4. Detection Method

LoGos has three detection approaches: process names-based
blacklist/whitelist, suspicious API function calls, and analytics.
Each has detection modules. They are defined in BOOL
WINAPI DllMain() and user-defined functions (for example,
int WINAPI Newsend()) in hook.dll. The entire flow of the
detection method is described in Fig. 3.

A. Blacklist and Whitelist Detection

The malicious webpages manipulate processes and read,
write, and modify files through them. They download files and
command the code snippets. To address these malicious
behaviors, we defined the detection modules in DllMain().

DllMain() has two cases: DLL_PROCESS_ATTACH and
DLL_PROCESS_DETACH. In the first case, we describe
blacklist/whitelist process detection modules. In whitelist
detection, LoGos regards these processes such as iedw.exe,

412 Sungjin Kim et al. ETRI Journal, Volume 39, Number 3, June 2017
https://doi.org/10.4218/etrij.17.0116.0810

Fig. 3. Block diagram of the operation of LoGos detection engine.

Whitelist

1st process identification

recv send

3rd analytics identification

WRI

4th classification

Malicious
Non-

malicious

cnzz.com

51yes.
com

List of processes
and API calls

iexplore.
exe

Blacklist

Java.exe

Unknown process

GLKZQ.
exe

Create
Process

InternalW

RegOpen
KeyExW

RegCreate
KeyEx

Create
Object()

http://www.malweb.
com/glkzq.exe ws2_32.dll

2nd API calls identification

cmd.exe

cscript.
exe

Uninst.
vbs Drops a file

Drops a
VBS file

Kernel32.dll

<process:event mapping>

Advapi32.dll

werfault.exe, dwwin.exe, drwtsn32.exe, wuapp.exe, and
vsjitdebugger.exe as benign. LoGos bypasses processes in the
whitelist because these processes are used as Windows core
system files or as debuggers. Of course, there exist exceptional
cases such as “Windows Updates” and “harmless plugins (for
example, for banking).” In these cases, we bypass them with
the whitelist.

Next, LoGos checks the blacklists. If a created process is not
“iexplore.exe” or a whitelist, LoGos identifies whether the
process name exists on the blacklist. Before drive-by
downloads, malicious websites force users to load plugins such
as Java or Flash, and then download VB scripts, open
command prompts, execute command lines, and create new
files. These process-related activities occur in rapid succession.
Hence, LoGos intensively observes opened processes such as
the cmd shell (known as “cmd.exe”) and other executable
programs (for example, java.exe, jp2launcher.exe, javaw.exe,
wscript.exe, cscript.exe, regsvr32.exe, and powershell.exe).
These processes are closely related to malicious attacks. Given
this backdrop, this single process is considered to be malicious,
and a high weight is allocated. Of course, other processes
except the blacklist/whitelist are considered to be suspicious.
We assign a low weight to each process to estimate riskiness.

LoGos determines severity based on pairs of processes
and events. For example, there are attack process trees
such as iexplore.exe/HttpOpenRequestA, iexplore.exe/
URLDownloadToFile, and malware.exe/CreateFileA. If
regsvr32.exe emerges in a serial process tree and calls
RegOpenKeyExA(), our model generates an alert about this
process. Further, if cmd.exe calls the CreateObject() function,
this behavior is considered as malicious. We inspect command
logs by GetCommandLine(). Likewise, LoGos inspects the

process sequence and API function calls of the opened, loaded,
and created processes. We maintain a pool of running
processes and suspicious API functions defined as malicious.

B. Suspicious API Function Call Detection

LoGos surveils API functions used by malicious websites.
For example, “RegOpenKeyExW” denotes “signatures” of
malicious behaviors because general webpages do not open the
registry key.

To monitor these suspicious API functions, we defined
the API function calls in dllMain(). For instance, hook_
API(“Ws2_32.dll,” “send,” (PROC)Newsend, g_pSEND); In a
hook_API function, we state “5-byte code patch” to point out
the initial address of the Newsend() function. Therefore, from
this indication, LoGos can intercept “attack behaviors” of all
“Ws2_32.dll.send” function calls exported via IE browsers or
created processes.

In addition, we declared other API functions such
as thread (ntdll.ZwResumeThread), mouse event (user32.
CallNextHookEx), network (Ws2_32.recv), crypt (ADVAPI32.
CryptEncrypt and wininet.dll), and registry (ADVAPI32.Reg
CreateKeyExA). We also identified unauthorized processes
created through “kernel32.Create ProcessInternalW.”

In particular, LoGos monitors changes in registry locations
by hooking ADVAPI32.dll. In this case, our model surveils
RegOpenKeyExA, or RegOpenKeyExW calls, which are key
values for Run, Associations, and Start Page.

To read the network traffic, we hook “send” and “WSASend”
of Ws2_32.dll. By hooking winsock’s send() and recv(), we
can monitor port 443 and unfamiliar ports for unknown request
methods (except HTTP methods such as POST, HEAD,
PUT, DELETE, TRACE, and JQSM) and unknown HTTPS

ETRI Journal, Volume 39, Number 3, June 2017 Sungjin Kim et al. 413
https://doi.org/10.4218/etrij.17.0116.0810

protocols (excluding 0x16, 0x14, 0x01 in (BYTE*)buf, or
encryptedString). From this traffic information, LoGos also
detects suspicious analytics such as nd.qq.com, XXyes.com,
and cnzz.com. Attackers often insert analytics in webpages to
gather the victim’s access information. This is commonly
accompanied by malicious URLs. Further, we can extract
malicious links that are concealed in the referrer and URI of the
HTTP header.

Similarly, we define a NewCallNextHookEx() function that
is used to manipulate a left mouse event. Thus, the Windows
popup messages for “Install,” “Save,” and “Run” are controlled.

LoGos calculates the sum of the product of each opened
process and its API function calls for estimating the riskiness of
accessed domains. For the risk assessment, we follow these
steps: The eigenvector w matching the maximum eigenvalue
λmax of the pairwise comparison matrix A is the final expression
of the preferences among the processes (related to the blacklist
and non-blacklist in our method). To determine the eigenvector,
we need to find the solution of the characteristic equation of
matrix A. The characteristic function is as follows:

11 12 1

21 22 2

1 1

() .

n

n

n n nn

a a a

a a a
f A I

a a a




  







   






 



 (1)

Its respective characteristic equation f() = |A − I| =	 0 is
presented in the form of the polynomial c0n

 + c1n–1 + ··· +	 	 	 	
c	n–1 + c n = 0. The eigenvectors of matrix A are the columns
and nonzero vector Xi, for which the following equality holds:
(A − i)Xi = 0. If we assume that Xi = w for eigenvector λmax,
we need to find the solution to the equation Aw = λmaxw. Below
are three methods for finding the eigenvector corresponding to
λmax in our risk estimation. Our proposed model is defined
as a method of normalized arithmetic averages. The prepared
pairwise comparison matrix is normalized. As a result of the
normalization, matrix A is transformed into matrix B = [bij].
The malware of matrix B are calculated according to the
following formula:

1

.ij
ij n

ij
i

a
b

a





 (2)	

Calculation of the preference among the malware under
investigation (eigenvector w = [wi]) is performed by calculating
the arithmetic averages of the rows of the normalized
comparison matrix. The components of this vector are
calculated according to the following formula:

1 .

n

ij
j

j

b

w
n




 (3)	

The maximum eigenvector is calculated according to the
following equation:

max
1

()1
.

n
i

i in w

 
Aw

 (4)	

The above method for calculating the eigenvector and
eigenvalue gives good results when there is high consistency in
the pairwise comparisons. This λmax is a preference list for
opened processes n. This output becomes the input of pi. We
multiply each process pi with all aj (called API functions). Thus,
the website risk index (WRI) can be normalized as follows:

1 1= .

n m

i j
i j

p a

WRI
n

 


 (5)

A risk index above the threshold (WRI ≥ threshold) is a critical
factor in identifying maliciousness.

V. Evaluation

In this section, we evaluate the detection effectiveness and
performance of LoGos. First, we compare its detection rate
with those of the systems proposed in previous studies. Second,
we evaluate the overall performance of LoGos using a large-
scale dataset.

1. Comparison with Previous Work

To compare our system with those from prior studies, we
selected Thug 0.7.2 and Cuckoo Sandbox 2.0. Both are state-
of-the-art tools for detecting malicious activities. In particular,
Thug is a low-interaction, Python-based honeyclient that
emulates a web browser environment for analyzing malicious
web content. Cuckoo is a sandbox tool that mimics virtual
system environments to facilitate the in-depth analysis needed
to detect reconnaissance and drive-by download symptoms
caused by malicious URLs and files. LoGos has adapted the
properties of both systems; namely, malicious webpage
detection based on some profiled patterns and dynamic
analysis via the Windows API hook method. We compared the
two systems with our proposed model. Both tools were
updated to contain their most recent functionalities.

We first compared detection rates with these tools. Before
testing, we collected a labeled dataset composed of both
malicious and benign pages. The dataset comprises 57 domains
that are known to trigger drive-by download attacks. These
domains were extracted from DNS-BH [31], malware domain
list [32], and a third-party vendor; they used exploit kits such as
Rig, CK VIP, SweetOrange, Gongdad, and Blackhole. We
performed manual verification to confirm that these domains

414 Sungjin Kim et al. ETRI Journal, Volume 39, Number 3, June 2017
https://doi.org/10.4218/etrij.17.0116.0810

Table 1. Comparison with previous work.

Work False negative (%) False positive (%)

Thug [3] 26.315 39.048

LoGos 1.754 1.905

Cuckoo [2] 1.754 14.286

are indeed working as malicious websites; VirusTotal was used
as a reference [33].

One hundred benign domains from the Alexa Top 250 [34]
were also included in our sampled domains. In addition, we
added five benign domains related to Windows updates and
ActiveX-based downloads. Therefore, 105 samples were benign
domains. We know that these Alexa Top domains are often used
for benign website tests because these sites are well managed to
prevent being compromised by attacks. Nonetheless, we
confirmed the maliciousness of these domains using VirusTotal.

Note that we unchecked options that are offered in Cuckoo
for providing rapid test results. We also note that one IE and
one VM were used in this test for LoGos. This circumstance
allowed us to fairly evaluate the effectiveness of test tools.

The results of the test are presented in Table 1. The detailed
results show that LoGos exhibits a high detection rate and a low
FN/FP rate. Moreover, our exceptional processing is highlighted
even in benign update sites; however, we could still not handle
some ActiveXs (we resolved this problem in a subsequent
revision, but Cuckoo still has this issue). Both systems effectively
detected malicious files created by drive-by downloads.

Thug showed a FN/FP rate of about 26% and 39%,
respectively. Its FN seems to have a lack of pattern rules.
YARA rules [35] such as g01Pack 2 also produced high FP.
When these rules were not applied, the FP rate was reduced to
9.524%. Cuckoo showed a high detection rate in a Windows 7
64-bit VM environment. However, it still returns a high FP rate
for benign ActiveX downloads and some downloaded files. A
FN of LoGos and Cuckoo caused improper plug-in versions.

LoGos was tested with 4 GB of memory, 1 CPU, and a
Windows 7 VM image on a PC with an Intel i7-3610QM CPU.
Thug and Cuckoo were tested on a server with Intel(R)
Xeon(R) CPU E5620 at 2.40 GHz and with 32 GB memory.

Interestingly, our model yields low FP and FN rates. We
substantially reduced the FNs because our model closely
emulates a general Internet surfing environment. This means
that if vulnerable circumstances are satisfied, our model shows
an almost 100% detection rate. This model is not absolutely
dependent on pattern rules or new features.

2. Performance Test

We evaluated the performance of each system as shown in

Fig. 4. Average analysis time comparison with previous work per
domain.

LoGos Thug Cuckoo

150

100

50

0

S
ec

on
ds

Avg. time

Fig. 4. LoGos needed an average of 8.234 s to process every
domain. Thug and Cuckoo required 151.503 and 146.579 s,
respectively.

In this evaluation, Thug showed slight instability when
loading ActiveXObjects such as Microsoft.XMLHTTP and
wscript.shell, or JavaScript. These events were improperly
handled and resulted in excessive time consumption. If it did
not require such loading times, Thug could reduce the detection
time to within an average of 40 s, but tended to be stuck in
some domains when executing consecutive analyses. It needed
more than 30 min in some cases, although it provides fast
processing in general. Thus, in our test, the performance of
Thug was lower than that of high-interaction Cuckoo.
Furthermore, in our per-webpage analysis, the average analysis
time of LoGos was 0.624 s.

3. Large-Scale Performance Evaluation

This test was conducted over a six-month period by running
a large-scale dataset, which comprised the top 1 million sites
from Alexa.

In the large-scale performance evaluation, LoGos used a local
queue server. LoGos communicated with the queue server for
downloading candidate domains, and each VM sequentially
received respective domains. LoGos was composed of four
VMs and 15 IE 8.0 instances per VM with Windows 7. Thus, 60
IE instances were loaded simultaneously on an ESXi platform.
We allocated 4 GB of memory and 60 GB of HDD per VM.

LoGos processed an average of 364,356 domains daily. Its
tasks included malicious domain detection, malicious URL
detection, and created/modified/accessed file extraction. It was
able to evaluate approximately 3,264,629 webpages per day,
including the collection of all redirection information. This
large-scale evaluation can be compared with Prophiler [36],
which evaluated 18,939,908 webpages over 60 days. Our

ETRI Journal, Volume 39, Number 3, June 2017 Sungjin Kim et al. 415
https://doi.org/10.4218/etrij.17.0116.0810

model can complete the job within only six days. On the
contrary, Thug was unstable in a large-scale test. It showed
performance delays of about 4 h, even in the Alexa Top
200 domains, because it was stuck in some domains. Cuckoo
evaluated fewer than 600 domains on a daily basis.

Most VM systems exhibit poor performance owing to the
limited number of simultaneous VMs and long loading times.
By contrast, LoGos shows very high performance and provides
high-level safety and robustness despite the use of VMs.
LoGos alleviates problems with FNs and augments detection
coverage. The result reflects that LoGos is highly effective
in practice. In this test, our model’s total CPU usage was
between 60% and 65%, and it used between 10,853 MB and
12,675 MB of memory.

VI. Discussion

This study revealed the need for i) supporting a stable in-
depth behavior analysis model and ii) high performance. To
fulfill these objectives, we employed an IE-based API hooking.

Nonetheless, LoGos can provide uncertain results when
exploiting code in webpages meets improper plug-in versions.
This problem is common in VM-based analysis systems, even
though we utilized optimized application versions to elevate
detection rates. In this regard, we can intelligently change VM
images to different versions and inspect various malicious
website attacks. Specifically, our model can perform four
different inspections of the same website using four different
image versions. These vulnerable applications can be easily
added to each VM image. However, we also realize that
various vulnerable versions degrade the detection opportunities
of the entire domain.

The crawling time and crawling page depth affect the
detection rate and performance. Indeed, a full-depth crawling
process has a negative effect on malicious website detection
because full-depth link scanning of webpages produces
uncontrollably heavy loads as a result. Hence, the system
degrades the entire detection opportunities because of time
consumed to scan unnecessary webpages. Most malicious
websites spread their malware during a relatively short lifetime.
Attackers briefly open malicious links, and they disappear a
short time later. For these attackers’ tactics, full crawling is
negative. However, there exists a dilemma because some
exploit codes remain at deep page depths. Thus, further studies
are needed to solve the relationship between page depth and
crawling performance.

We also aim to improve the processing power of our model.
Despite our efforts, our system’s ability to discover large
numbers of malicious webpages is still insufficient. The
loading of IE browsers requires significant resources. In the

future, a more lightweight browser can be used to increase
system performance. Thus, our goal is to further enhance
system performance and detection accuracy.

Consequently, by utilizing multi-API hooking and multi-VM
and multi-IE configurations, LoGos can detect threats in
webpages that contain various types of malware. In addition,
this model offers effective results because of its stability and
high performance. This is especially useful when scanning
massive domains as a practical system.

VII. Conclusions

LoGos detects malicious webpages and binary executables
by introducing three key concepts: IE-based tracking, API
hooking-based detection, and sequential detection model
construction. Its IE-based detection scheme replicates the
Internet access of users. This model sequentially accesses a
large number of domains and identifies attacks. LoGos detects
malicious websites over ten times faster than existing tools.
This tool is an efficient and lightweight system, which contrasts
with legacy static analysis tools and other dynamic tools that
use comparative techniques. Similar to most dynamic analysis
systems, it provides a high degree of accuracy and reliability in
detecting various malicious types. It has proven to have stable
operation, and provides scalability with multi-VM and multi-
server systems; it is highly practical. Above all, it shows that
high-interaction systems can have high performance.

References

[1] B. Eshete and V.N. Venkatakrishnan, “WebWindow: Leveraging

Exploit Kit Workflows to Detect Malicious Urls,” Proc. ACM

Conf. Data Applicat. Security Privacy, San Antonio, TX, USA,

Mar. 3–5, 2014, pp. 305–312.

[2] B. Eshete et al., “EKHunter: a Counter-Offensive Toolkit for

Exploit Kit Infiltration,” Netw. Distrib. Security Symp., San Diego,

CA, USA, Feb. 8–11, 2015, pp. 1–15.

[3] Anubis, Accessed Nov. 11, 2016. http://anubis.iseclab.org/

[4] Cuckoo Sandbox, Accessed Nov. 11, 2016. https://

cuckoosandbox.org/

[5] Thug, Accessed Nov. 11, 2016. http://buffer.github.io/thug/

[6] Capture-HPC, Accessed Nov. 11, 2016. https://projects.honeynet.

org/capture-hpc

[7] C. Willems, T. Holz, and F. Freiling, “Toward Automated

Dynamic Malware Analysis Using CWSandbox,” IEEE Security

Privacy, vol. 5, no. 2, Apr. 2007, pp. 32–39.

[8] Norman SandBox, Accessed Nov. 11, 2016. http://sandbox.

norman.no

[9] M. Cova, C. Kruegel, and G. Vigna, “Detection and Analysis of

Drive-by-Download Attacks and Malicious JavaScript Code,”

416 Sungjin Kim et al. ETRI Journal, Volume 39, Number 3, June 2017
https://doi.org/10.4218/etrij.17.0116.0810

Proc. Int. Conf. World Wide Web, Raleigh, NC, USA, Apr. 26–

30, 2010, pp. 281–290.

[10] M.A. Rajab et al., “CAMP: Content-Agnostic Malware

Protection,” Netw. Distrib. Security Symp., San Diego, CA, USA,

Feb. 24–27, 2013, pp. 1–15.

[11] C. Curtsinger et al., “ZOZZLE: Fast and Precise In-browser

JavaScript Malware Detection,” Proc. USENIX Conf. Security,

San Francisco, CA, USA, Aug. 8–12, 2011, p. 3.

[12] L. Lu et al., “Blade: an Attack-Agnostic Approach for Preventing

Drive-by Malware Infections,” Proc. ACM Conf. Comput.

Commun. Security, Chicago, IL, USA, Oct. 2010, pp. 440–450.

[13] A. Dewald, T. Holz, and F.C. Freiling, “ADSandbox:

Sandboxing JavaScript to Fight Malicious Websites,” Proc. ACM

Symp. Appl. Comput., Sierre, Switzerland, 2010, pp. 1859–1864.

[14] SpiderMonkey, Accessed Jan. 25, 2017. https://developer.mozilla.

org/en-US/docs/Mozilla/Projects/SpiderMonkey

[15] Phantomjs, Accessed Jan. 25, 2017. http://phantomjs.org/

[16] Chrome V8, Accessed Jan. 25, 2017. https://developers.google.

com/v8/

[17] PyV8, Accessed Jan. 25, 2017. https://pypi.python.org/pypi/PyV8

[18] T. Taylor et al., “Detecting Malicious Exploit Kits Using Tree-

Based Similarity Searches,” Proc. ACM Conf. Data Applicat.

Security Privacy, New Orleans, LA, USA, 2016, pp. 255–266.

[19] B. Stock, B. Livshits, and B. Zorn, “Kizzle: a Signature Compiler

for Detecting Exploit Kits,” Annu., IEEE/IFIP Int. Conf.

Dependable Syst. Netw., Toulouse, France, 2016, pp. 455–466.

[20] A. Nappa, M.Z. Rafique, and J. Caballero, “Driving in the Cloud:

An Analysis of Drive-by Download Operations and Abuse

Reporting,” in International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment,

Heidelberg, Berlin, Germany: Springer, 2013, pp. 1–20.

[21] Heap Spraying, Accessed Nov. 11, 2016. https://en.wikipedia.

org/wiki/Heap_spraying

[22] Address Space Layout Randomization, Accessed Nov. 11, 2016.

http://en.wikipedia.org/wiki/Address space layout randomization

[23] Data Execution Prevention, Accessed Nov. 11, 2016. https://en.

wikipedia.org/w/index.php?title=Data_Execution_Prevention&re

direct=no

[24] N. Jagpal et al., “Trends and Lessons from Three Years Fighting

Malicious Extensions,” Proc. USENIX Conf. Security Symp.,

Washington, D.C., USA, Aug. 12–14, 2015, pp. 579–593.

[25] G. Stringhini et al., “Shady Paths: Leveraging Surfing Crowds to

Detect Malicious Web Pages,” Proc. ACM SIGSAC Conf.

Comput. Commun. Security, Berlin, Germany, Nov. 4–8, 2013,

pp. 133–144.

[26] Z. Li et al., “Knowing Your Enemy: Understanding and Detecting

Malicious Web Advertising,” Proc. ACM Conf. Comput. Commun.

Security, Raleigh, NC, USA, Oct. 16–18, 2012, pp. 674–686.

[27] G. Wang et al., “Detecting Malicious Landing Pages in Malware

Distribution Networks,” Auun. IEEE/IFIP Int. Conf. Dependable

Syst. Netw., Budapest, Hungary, June 24–27, 2013, pp. 1–11.

[28] Hooking, Accessed Jan. 25, 2017. https://en.wikipedia.org/wiki/

Hooking

[29] VMware ESXi, Accessed Nov. 11, 2016. https://www.vmware.

com/products/esxi-and-esx/overview

[30] RabbitMQ, Accessed Nov. 11, 2016. https://www.rabbitmq.com/

[31] Malware Domain Blocklist, Accessed Nov. 11, 2016. http://www.

malwaredomains.com/

[32] Malware Domain List, Accessed Nov. 11, 2016. https://www.

malwaredomainlist.com/

[33] VirusTotal, Accessed Nov. 11, 2016. https://www.virustotal.com/

[34] Alexa, Accessed Nov. 11, 2016. http://www.alexa.com/topsites

[35] YARA, Accessed Nov. 11, 2016. http://plusvic.github.io/yara/

[36] D. Canali et al., “Prophiler: a Fast Filter for the Large-Scale

Detection of Malicious Web Pages Categories and Subject

Descriptors,” Proc. Int. Conf. World Wide Web, Hyderabad, India,

Mar. 28–Apr. 1, 2011, pp. 197–206.

Sungjin Kim is currently a PhD student in the

Graduate School of Information Security at the

Korea Advanced Institute of Science and

Technology, Daejeon, Rep. of Korea. He

received his BS and MS degrees in computer

science from Ohio State University, Columbus,

USA and Sogang University, Seoul, Rep. of

Korea, respectively. His current research interests include network

security, machine learning, big data analytics, social network analysis,

web security, and malware detection and analysis.

Sungkyu Kim received his BS degrees from

the College of Engineering at Hoseo University,

Seoul, Rep. of Korea in 2004. He is currently

working as a software developer at NcubeLab,

Seoul, Rep. of Korea. His research interests are

focused on malware detection using Windows

APIs and kernel security.

Dohoon Kim received his BS degrees in

mathematics and in computer science &

engineering at Korea University, Seoul, Rep. of

Korea, in 2005. He received a PhD degree from

the College of Information and Communication

at Korea University in 2012. He is an

information security reader and senior

researcher in the IT Management & Support Office at the Agency for

Defense Development, Daejeon, Rep. of Korea. His current research

interests are network security, risk management, cognitive radio

networks, software engineering, situational awareness, future Internet,

and forecast engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

