DOI QR코드

DOI QR Code

Expanding depletion region via doping: Zn-doped Cu2O buffer layer in Cu2O photocathodes for photoelectrochemical water splitting

  • Lee, Kangha (Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Cheol-Ho (Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Cheong, Jun Young (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Seokwon (Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Il-Doo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Joh, Han-Ik (Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Doh Chang (Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2017.07.04
  • Accepted : 2017.08.09
  • Published : 2017.12.01

Abstract

We report photoelectrochemical hydrogen evolution reaction using a $Cu_2O$-based photocathode with a layer doped with Zn ions. The doping results in the shift of the onset flat-band potential of the photocathode, likely a consequence of maximized band-bending in the $Cu_2O/Zn$ : $Cu_2O$ heterojunction. Systematic electrochemical analysis reveals that expansion of depletion region is responsible for the enhanced photoelectrochemical performance, e.g., the increase of photocurrent and reduced internal resistance.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci., 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
  2. M. Graetzel, Acc. Chem. Res., 14, 376 (1981). https://doi.org/10.1021/ar00072a003
  3. O. Khaselev and J. A. Turner, Science, 280, 425 (1998). https://doi.org/10.1126/science.280.5362.425
  4. M. G. Walter, E. L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 110, 6446 (2010). https://doi.org/10.1021/cr1002326
  5. J. Luo, L. Steier, M.-K. Son, M. Schreier, M.T. Mayer and M. Gratzel, Nano Lett., 16, 1848 (2016). https://doi.org/10.1021/acs.nanolett.5b04929
  6. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley and M. Gratzel, Energy Environ. Sci., 5, 8673 (2012). https://doi.org/10.1039/c2ee22063f
  7. M. Schreier, P. Gao, M.T. Mayer, J. Luo, T. Moehl, M.K. Nazeeruddin, S.D. Tilley and M. Gratzel, Energy Environ. Sci., 8, 855 (2015). https://doi.org/10.1039/C4EE03454F
  8. A. A. Dubale, W.-N. Su, A. G. Tamirat, C.-J. Pan, B.A. Aragaw, H.-M. Chen, C.-H. Chen and B.-J. Hwang, J. Mater. Chem. A, 2, 18383 (2014). https://doi.org/10.1039/C4TA03464C
  9. K. Lee, S. Lee, H. Cho, S. Jeong, W.D. Kim, S. Lee and D.C. Lee, J. Energy Chem. (2017), DOI:10.1016/j.jechem.2017.04.019.
  10. L. I. Bendavid and E.A. Carter, J. Phys. Chem. B, 117, 15750 (2013). https://doi.org/10.1021/jp406454c
  11. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Nature Mater., 10, 456 (2011). https://doi.org/10.1038/nmat3017
  12. S.D. Tilley, M. Schreier, J. Azevedo, M. Stefik and M. Graetzel, Adv. Funct. Mater., 24, 303 (2014). https://doi.org/10.1002/adfm.201301106
  13. C. Li, T. Hisatomi, O. Watanabe, M. Nakabayashi, N. Shibata, K. Domen and J.-J. Delaunay, Energy Environ. Sci., 8, 1493 (2015). https://doi.org/10.1039/C5EE00250H
  14. J. P. Bosco, S.B. Demers, G. M. Kimball, N. S. Lewis and H.A. Atwater, J. Appl. Phys., 112, 093703 (2012). https://doi.org/10.1063/1.4759280
  15. P. Dai, W. Li, J. Xie, Y. He, J. Thorne, G. McMahon, J. Zhan and D. Wang, Angew. Chem. Int. Ed., 53, 13493 (2014). https://doi.org/10.1002/anie.201408375
  16. C. Li, T. Hisatomi, O. Watanabe, M. Nakabayashi, N. Shibata, K. Domen and J.-J. Delaunay, Appl. Phys. Lett., 109, 033902 (2016). https://doi.org/10.1063/1.4959098
  17. D. Aspnes, Surf. Sci., 132, 406 (1983). https://doi.org/10.1016/0039-6028(83)90550-2
  18. S. Hussain, C. Cao, Z. Usman, Z. Chen, G. Nabi, W. S. Khan, Z. Ali, F.K. Butt and T. Mahmood, Thin Solid Films, 522, 430 (2012). https://doi.org/10.1016/j.tsf.2012.08.013
  19. S.N. Kale, S. B. Ogale, S.R. Shinde, M. Sahasrabuddhe, V. N. Kulkarni, R. L. Greene and T. Venkatesan, Appl. Phys. Lett., 82, 2100 (2003). https://doi.org/10.1063/1.1564864
  20. X.-M. Cai, X.-Q. Su, F. Ye, H. Wang, X.-Q. Tian, D.-P. Zhang, P. Fan, J.-T. Luo, Z.-H. Zheng, G.-X. Liang and V. A. L. Roy, Appl. Phys. Lett., 107, 083901 (2015). https://doi.org/10.1063/1.4928527
  21. M. Wei, N. Braddon, D. Zhi, P.A. Midgley, S.K. Chen, M.G. Blamire and J. L. MacManus-Driscoll, Appl. Phys. Lett., 86, 072514 (2005). https://doi.org/10.1063/1.1869547
  22. F. Hu, Y. Zou, L. Wang, Y. Wen and Y. Xiong, Int. J. Hydrogen Energy, 41, 15172 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.262
  23. A. Ravichandran, K. Dhanabalan, K. Ravichandran, R. Mohan, K. Karthika, A. Vasuhi and B. Muralidharan, Acta Metal. Sin. (Engl. Lett.), 28, 1041 (2015). https://doi.org/10.1007/s40195-015-0292-y
  24. F. Ye, X.-Q. Su, X.-M. Cai, Z.-H. Zheng, G.-X. Liang, D.-P. Zhang, J.-T. Luo and P. Fan, Thin Solid Films, 603, 395 (2016). https://doi.org/10.1016/j.tsf.2016.02.037
  25. L. Zhang, D. Jing, L. Guo and X. Yao, ACS Sustainable Chem. Eng., 2, 1446 (2014). https://doi.org/10.1021/sc500045e
  26. C. Zhu and M. J. Panzer, ACS Appl. Mater. Interfaces, 7, 5624 (2015). https://doi.org/10.1021/acsami.5b00643
  27. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Nature Mater., 10, 456 (2011). https://doi.org/10.1038/nmat3017
  28. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley and M. Gratzel, Energy Environ. Sci., 5, 8673 (2012). https://doi.org/10.1039/c2ee22063f
  29. B. Heng, T. Xiao, W. Tao, X. Hu, X. Chen, B. Wang, D. Sun and Y. Tang, Crystal Growth Design, 12, 3998 (2012). https://doi.org/10.1021/cg3004799
  30. L. Bertoluzzi and J. Bisquert, J. Phys. Chem. Lett., 3, 2517 (2012). https://doi.org/10.1021/jz3010909
  31. C. Du, X. Yang, M.T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping and D. Wang, Angew. Chem. Int. Ed., 52, 12692 (2013). https://doi.org/10.1002/anie.201306263
  32. A. Paracchino, J. C. Brauer, J.-E. Moser, E. Thimsen and M. Graetzel, J. Phys. Chem. C, 116, 7341 (2012). https://doi.org/10.1021/jp301176y
  33. K. Gelderman, L. Lee and S. Donne, J. Chem. Educ., 84, 685 (2007). https://doi.org/10.1021/ed084p685
  34. A. Goltzene, C. Schwab and H. Wolf, Solid State Commun., 18, 1565 (1976). https://doi.org/10.1016/0038-1098(76)90394-X
  35. T. Jiang, T. Xie, W. Yang, L. Chen, H. Fan and D. Wang, J. Phys. Chem. C, 117, 4619 (2013). https://doi.org/10.1021/jp311532s
  36. S. Shyamal, P. Hajra, H. Mandal, A. Bera, D. Sariket, A. K. Satpati, S. Kundu and C. Bhattacharya, J. Mater. Chem. A, 4, 9244 (2016). https://doi.org/10.1039/C6TA03237K
  37. A. Musa, T. Akomolafe and M. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998). https://doi.org/10.1016/S0927-0248(97)00233-X
  38. M. Futsuhara, K. Yoshioka and O. Takai, Thin Solid Films, 317, 322 (1998). https://doi.org/10.1016/S0040-6090(97)00646-9
  39. J. Hernandez, P. Wrschka and G. Oehrlein, J. Electrochem. Soc., 148, G389 (2001). https://doi.org/10.1149/1.1377595
  40. W.W. Gartner, Phys. Rev., 116, 84 (1959). https://doi.org/10.1103/PhysRev.116.84
  41. Y. Liu, H. K. Turley, J.R. Tumbleston, E.T. Samulski and R. Lopez, Appl. Phys. Lett., 98, 162105 (2011). https://doi.org/10.1063/1.3579259
  42. K. Khan, Y. Leung and J. Kos, Renew. Energy, 11, 293 (1997). https://doi.org/10.1016/S0960-1481(96)00132-2
  43. M. Chen, Z. Pei, C. Sun, L. Wen and X. Wang, J. Cryst. Growth, 220, 254 (2000). https://doi.org/10.1016/S0022-0248(00)00834-4
  44. L.G. Mar, P.Y. Timbrell and R.N. Lamb, Thin Solid Films, 223, 341 (1993). https://doi.org/10.1016/0040-6090(93)90542-W
  45. B.-C. Lin, S.-Y. Chen and P. Shen, Nanoscale Res. Lett., 7, 1 (2012). https://doi.org/10.1186/1556-276X-7-1

Cited by

  1. Progress in Powder Coating Technology Using Atomic Layer Deposition vol.5, pp.16, 2017, https://doi.org/10.1002/admi.201800581
  2. Enhancing Durability and Photoelectrochemical Performance of the Earth Abundant Ni-Mo/TiO 2 /CdS/CIGS Photocathode under Various pH Conditions vol.11, pp.20, 2017, https://doi.org/10.1002/cssc.201801211
  3. Synergistic doping effects of a ZnO:N/BiVO4:Mo bunched nanorod array photoanode for enhancing charge transfer and carrier density in photoelectrochemical systems vol.10, pp.43, 2017, https://doi.org/10.1039/c8nr06630b
  4. Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications vol.96, pp.None, 2017, https://doi.org/10.1016/j.pmatsci.2018.03.006
  5. Molecule-Driven Shape Control of Metal Co-Catalysts for Selective CO2 Conversion Photocatalysis vol.10, pp.24, 2018, https://doi.org/10.1002/cctc.201801291
  6. Impact of TiO2 layer formed on CuxS Films on the Photoelectrochemical Water Reduction Process vol.167, pp.4, 2017, https://doi.org/10.1149/1945-7111/ab7178
  7. Design of metallic cocatalysts in heterostructured nanoparticles for photocatalytic CO2-to-hydrocarbon conversion vol.53, pp.12, 2017, https://doi.org/10.1088/1361-6463/ab5cb7
  8. Engineering a Highly Improved Porous Photocatalyst Based on Cu2O by a Synergistic Effect of Cation Doping of Zn and Carbon Layer Coating vol.59, pp.21, 2017, https://doi.org/10.1021/acs.inorgchem.0c02547
  9. Investigation of bulk carrier diffusion dynamics using β-Mn2V2−xMoxO7 photoanodes in solar water splitting vol.540, pp.1, 2021, https://doi.org/10.1016/j.apsusc.2020.148376