DOI QR코드

DOI QR Code

A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds

  • Received : 2017.03.28
  • Accepted : 2017.06.24
  • Published : 2017.10.01

Abstract

Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of $R^2$. In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.

Acknowledgement

Supported by : Engineering Development Research Center (EDRC)

References

  1. B. E. Poling, J. M. Prausnitz and J. P. O'Connell, The properties of gases and liquids, Mcgraw-hill, NY (2001).
  2. T. Ghosh, D. Prasad, N. Dutt and K. Rani, Viscosity of liquids: Theory, estimation, experiment, and data, Springer, NY (2007).
  3. M. Hobson and J.H. Weber, AIChE J., 2, 354 (1956). https://doi.org/10.1002/aic.690020312
  4. L. Constantinou, R. Gani and J. P. O'Connell, Fluid Phase Equilib., 103, 11 (1995). https://doi.org/10.1016/0378-3812(94)02593-P
  5. H. S. Elbro, A. Fredenslund and P. Rasmussen, Ind. Eng. Chem. Res., 30, 2576 (1991). https://doi.org/10.1021/ie00060a011
  6. B. H. Park, M. S. Yeom, K.-P. Yoo and C. S. Lee, Korean J. Chem. Eng., 15, 246 (1998). https://doi.org/10.1007/BF02707079
  7. J. Park and D. Paul, J. Membr. Sci., 125, 23 (1997). https://doi.org/10.1016/S0376-7388(96)00061-0
  8. D. Sola, A. Ferri, M. Banchero, L. Manna and S. Sicardi, Fluid Phase Equilib., 263, 33 (2008). https://doi.org/10.1016/j.fluid.2007.09.022
  9. P.R. Duchowicz, A. Talevi, L. E. Bruno-Blanch and E. A. Castro, Biorg. Med. Chem., 16, 7944 (2008). https://doi.org/10.1016/j.bmc.2008.07.067
  10. Y. Dadmohammadi, S. Gebreyohannes, B. J. Neely and K. A. Gasem, Fluid Phase Equilib., 409, 318 (2016). https://doi.org/10.1016/j.fluid.2015.10.009
  11. S. S. Godavarthy, R. L. Robinson and K. A. Gasem, Fluid Phase Equilib., 246, 39 (2006). https://doi.org/10.1016/j.fluid.2006.05.020
  12. A.R. Katritzky, V. S. Lobanov and M. Karelson, Chem. Soc. Rev., 24, 279 (1995). https://doi.org/10.1039/cs9952400279
  13. H. Maadani, M. Salahinejad and J. Ghasemi, SAR QSAR Environ. Res., 26, 1033 (2015).
  14. B. Wang, L. Zhou, K. Xu and Q. Wang, Ind. Eng. Chem. Res., 56, 47 (2017). https://doi.org/10.1021/acs.iecr.6b04347
  15. L.C. Yee and Y.C. Wei, Current modeling methods used in qsar/ qspr, Wiley-VCH: Weinheim, Germany (2012).
  16. L. S. Aiken, S. G. West and S. C. Pitts, Multiple linear regression: Testing and interpreting interactions, Sage, CA (1991).
  17. Y. Ammi, L. Khaouane and S. Hanini, Korean J. Chem. Eng., 32, 2300 (2015). https://doi.org/10.1007/s11814-015-0086-y
  18. A.A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi and Z. Alaee, Korean J. Chem. Eng., 33, 1352 (2016). https://doi.org/10.1007/s11814-014-0334-6
  19. E. Mohagheghian, H. Zafarian-Rigaki, Y. Motamedi-Ghahfarrokhi and A. Hemmati-Sarapardeh, Korean J. Chem. Eng., 32, 2087 (2015). https://doi.org/10.1007/s11814-015-0025-y
  20. M. Luckas and K. Lucas, AIChE J., 32, 139 (1986). https://doi.org/10.1002/aic.690320115
  21. W.D. Monnery, W.Y. Svrcek and A.K. Mehrotra, Can. J. Chem. Eng., 73, 3 (1995). https://doi.org/10.1002/cjce.5450730103
  22. A. Jegadeesan, Structure-based generalized models for selected purefluid saturation properties, Oklahoma State University, M.S. Thesis (2006).
  23. R.D. Shaver, New scaled-variable-reduced-coordinate framework for correlation of pure fluid saturation properties, Oklahoma State University, M.S. Thesis (1990).
  24. R. Shaver, R. Robinson and K. Gasem, Fluid Phase Equilib., 64, 141 (1991). https://doi.org/10.1016/0378-3812(91)90010-5
  25. R. Shaver, R. Robinson and K. Gasem, Fluid Phase Equilib., 78, 81 (1992). https://doi.org/10.1016/0378-3812(92)87030-Q
  26. M. McHugh and V. Krukonis, Supercritical fluid extraction: Principles and practice, Elsevier (2013).
  27. W. Sauerbrei and M. Schumacher, Stat. Med., 11, 2093 (1992). https://doi.org/10.1002/sim.4780111607
  28. E.W. Steyerberg, M. J. Eijkemans and J.D. F. Habbema, J. Clin. Epidemiol., 52, 935 (1999). https://doi.org/10.1016/S0895-4356(99)00103-1
  29. R.M. O'brien, Quality & Quantity, 41, 673 (2007). https://doi.org/10.1007/s11135-006-9018-6
  30. N. Dutt, Y. Ravikumar and K.Y. Rani, Chem. Eng. Commun., 200, 1600 (2013). https://doi.org/10.1080/00986445.2012.756396
  31. Y. Zhao, X. Zhang, L. Deng and S. Zhang, Comput. Chem. Eng., 92, 37 (2016). https://doi.org/10.1016/j.compchemeng.2016.04.035
  32. B.-K. Chen, M.-J. Liang, T.-Y. Wu and H. P. Wang, Fluid Phase Equilib., 350, 37 (2013). https://doi.org/10.1016/j.fluid.2013.04.009
  33. R. L. Gardas and J.A. Coutinho, Fluid Phase Equilib., 266, 195 (2008). https://doi.org/10.1016/j.fluid.2008.01.021