DOI QR코드

DOI QR Code

A study on the direct catalytic steam gasification of coal for the bench-scale system

  • Kang, Tae-Jin (Carbon Resources Institute, Greenhouse Gas Resources Research Group, Korea Research Institute of Chemical Technology) ;
  • Park, HyeJung (Department of Energy Systems Research, Graduate School, Ajou University) ;
  • Namkung, Hueon (Institute of Clean Coal Technology, East China University of Sci. & Tech.) ;
  • Xu, Li-Hua (Department of Energy Systems Research, Graduate School, Ajou University) ;
  • Park, Jung-Hyun (Carbon Resources Institute, Greenhouse Gas Resources Research Group, Korea Research Institute of Chemical Technology) ;
  • Heo, Iljeong (Carbon Resources Institute, Greenhouse Gas Resources Research Group, Korea Research Institute of Chemical Technology) ;
  • Chang, Tae-Sun (Carbon Resources Institute, Greenhouse Gas Resources Research Group, Korea Research Institute of Chemical Technology) ;
  • Kim, Beom Sik (Carbon Resources Institute, CO2 Energy Vector Research Group, Korea Research Institute of Chemical Technology) ;
  • Kim, Hyung-Taek (Department of Energy Systems Research, Graduate School, Ajou University)
  • Received : 2017.02.06
  • Accepted : 2017.06.20
  • Published : 2017.10.01

Abstract

Various techniques have been developed to increase the efficiency of coal gasification. The use of a catalyst in the catalytic-steam gasification process lowers the activation energy required for the coal gasification reaction. Catalytic-steam gasification uses steam rather than oxygen as the oxidant and can lead to an increased $H_2/CO$ ratio. The purpose of this study was to evaluate the composition of syngas produced under various reaction conditions and the effects of these conditions on the catalyst performance in the gasification reaction. Simultaneous evaluation of the kinetic parameters was undertaken through a lab-scale experiment using Indonesian low rank coals and a bench-scale catalytic-steam gasifier design. The composition of the syngas and the reaction characteristics obtained in the lab- and bench-scale experiments employing the catalytic gasification reactor were compared. The optimal conditions for syngas production were empirically derived using lab-scale catalytic-steam gasification. Scale-up of a bench-scale catalytic-steam gasifier was based on the lab-scale results based on the similarities between the two systems. The results indicated that when the catalytic-steam gasification reaction was optimized by applying the $K_2CO_3$ catalyst to low rank coal, a higher hydrogen yield could be produced compared to the conventional gasification process, even at low temperature.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. Intergovernmental Panel on Climate Change, Climate Change 2014: Mitigation of Climate Change (Vol. 3), Cambridge University Press (2015).
  2. World Energy Resources: Coal World Energy Council (2013).
  3. T. Takarada, Y. Tamai and A. Tomita, Fuel, 64(10), 1438 (1985). https://doi.org/10.1016/0016-2361(85)90347-3
  4. F. Huhn, J. Klein and H. Juntgen, Fuel, 62(2), 196 (1983). https://doi.org/10.1016/0016-2361(83)90197-7
  5. N. C. Nahas, Fuel, 62(2), 239 (1983). https://doi.org/10.1016/0016-2361(83)90207-7
  6. T. Wigmans, R. Elfring and J. A. Moulijn, Carbon, 21(1), 1 (1983). https://doi.org/10.1016/0008-6223(83)90150-1
  7. D.W. McKee, C.L. Spiro, P.G. Kosky and E. J. Lamby, Fuel, 62(2), 217 (1983). https://doi.org/10.1016/0016-2361(83)90202-8
  8. K. J. Huttinger and R. Minges, Fuel, 64(4), 486 (1985). https://doi.org/10.1016/0016-2361(85)90082-1
  9. R. J. Lang, Fuel, 65(10), 1324 (1986). https://doi.org/10.1016/0016-2361(86)90097-9
  10. T. Takarada, S. Ichinose and K. Kato, Fuel, 71(8), 883 (1992). https://doi.org/10.1016/0016-2361(92)90237-I
  11. H. Kubiak, H. J. Schroter, A. Sulimma and K. H. van Heek, Fuel, 62(2), 242 (1983). https://doi.org/10.1016/0016-2361(83)90208-9
  12. L. Kuhn and H. Plogmann, Fuel, 62(2), 205 (1983). https://doi.org/10.1016/0016-2361(83)90199-0
  13. H. Juntgen, Fuel, 62(2), 234 (1983). https://doi.org/10.1016/0016-2361(83)90206-5
  14. A. Triantoro and D. Diniyati, J. Novel Carbon Resource Sciences, 7, 68 (2013).
  15. S. J. Yuh and E. E. Wolf, Fuel, 62(6), 738 (1983). https://doi.org/10.1016/0016-2361(83)90316-2
  16. G. Bruno, M. Buroni, L. Carvani, G. Del Piero and G. Passoni, Fuel, 67(1), 67 (1988). https://doi.org/10.1016/0016-2361(88)90014-2
  17. A. Tomita, Y. Watanabe, T. Takarada, Y. Ohtsuka and Y. Tamai, Fuel, 64(6), 795 (1985). https://doi.org/10.1016/0016-2361(85)90012-2
  18. P.K. Bakkerud, Catal. Today, 106(1), 30 (2005). https://doi.org/10.1016/j.cattod.2005.07.147
  19. W.Y. Wen, Mechanisms of alkali metal catalysis in the gasification of coal, char, or graphite. Catal. Rev.-Sci. Eng., 22(1), 1 (1980). https://doi.org/10.1080/03602458008066528
  20. X. Yuan, L. Zhao, H. Namkung, T. J. Kang and H.T. Kim, Fuel Processing Technol., 141, 44 (2016). https://doi.org/10.1016/j.fuproc.2015.03.019
  21. C.A. Euker and R.A. Reitz, Exxon catalytic coal gasification process development program. Final Project Report for the U. S. Department of Energy under Contract No. ET-78-C-01-2777 (1981).
  22. A.C. Sheth, C. Sastry, Y.D. Yeboah, Y. Xu and P. Agarwal, J. Air Waste Manage. Association, 53(4), 451 (2003). https://doi.org/10.1080/10473289.2003.10466179
  23. X. Yuan, Performance evaluation of potassium catalyst recovery process in the $K_2CO_3$-catalyzed steam gasification system, Ajou University (2016).
  24. S.H. Lee and S.D. Kim, Korean Chem. Eng. Res., 46(3), 443 (2008).
  25. J.M. Lee, Y. J. Kim, W. J. Lee and S.D. Kim, Hwahak Konghak, 35(1), 121 (1997).
  26. D.W. McKee, Carbon, 20(1), 59 (1982). https://doi.org/10.1016/0008-6223(82)90075-6
  27. Z. L. Liu and H. H. Zhu, Fuel, 65(10), 1334 (1986). https://doi.org/10.1016/0016-2361(86)90099-2
  28. A. Karimi and M.R. Gray, Fuel, 90(1), 120 (2011). https://doi.org/10.1016/j.fuel.2010.07.032
  29. T. Suzuki, M. Mishima, J. Kitaguchi, M. Itoh and Y. Watanabe, Fuel Processing Technol., 8(3), 205 (1984). https://doi.org/10.1016/0378-3820(84)90011-0
  30. C. L. Spiro, D.W. Mckee, P.G. Kosky and E. J. Lamby, Fuel, 62(2), 180 (1983). https://doi.org/10.1016/0016-2361(83)90194-1
  31. P. J. Walker Jr., M. Shelef and R. A. Anderson, Catalysis of carbon gasification, Chem. Phys. Carbon; (United States), 4 (1968).
  32. D.A. Sams, T. Talverdian and F. Shadman, Fuel, 64(9), 1208 (1985). https://doi.org/10.1016/0016-2361(85)90176-0
  33. E. J. Hippo and D. Tandon, Preprints of Papers-american Chemical Society Division Fuel Chemistry, 41, 216 (1996).
  34. F. J. Long and K.W. Sykes, J. Chim. Phys., 47, 361 (1950). https://doi.org/10.1051/jcp/1950470361
  35. D.W. McKee, Carbon, 12(4), 453 (1974). https://doi.org/10.1016/0008-6223(74)90011-6
  36. W. L. Holstein and M. Boudart, Fuel, 62(2), 162 (1983). https://doi.org/10.1016/0016-2361(83)90190-4
  37. Y.T. Kim, D. K. Seo and J. H. Hwang, Korean Chem. Eng. Res., 49(3), 372 (2011). https://doi.org/10.9713/kcer.2011.49.3.372
  38. T. J. Kang, H. Namkung, L. H. Xu, H. Park, K. Hakizimana, J. De Dieu and H.T. Kim, Asia-Pacific J. Chem. Eng., 11(2), 237 (2016). https://doi.org/10.1002/apj.1960
  39. D. Kunii and O. Levenspiel, Fluidization Engineering, Elsevier (2013).
  40. J.Y. Park, D. K. Lee, S. C. Hwang, S. K. Kim, S. H. Lee, S. K. Yoon, J. H. Yoo, S. H. Lee and Y.W. Rhee, Clean Technol., 19(3), 306 (2013). https://doi.org/10.7464/ksct.2013.19.3.306
  41. J.M. Lee, Y. J. Kim and S.D. Kim, Appl. Therm. Eng., 18(11), 1013 (1998). https://doi.org/10.1016/S1359-4311(98)00039-8
  42. Y. Liu, J. Qian and J. Wang, Fuel Processing Technol., 63(1), 45 (2000). https://doi.org/10.1016/S0378-3820(99)00066-1
  43. W.B. Hauserman, Int. J. Hydrogen Energy, 19(5), 413 (1994). https://doi.org/10.1016/0360-3199(94)90017-5
  44. R.C. Timpe, R.W. Kulas, W.B. Hauserman, R.K. Sharma, E.S. Olson and W.G. Willson, Int. J. Hydrogen Energy, 22(5), 487 (1997).
  45. D.W. McKee, Fuel, 62(2), 170 (1983). https://doi.org/10.1016/0016-2361(83)90192-8
  46. J.M. Saber, J. L. Falconer and L. F. Brown, J. Catal., 90(1), 65 (1984). https://doi.org/10.1016/0021-9517(84)90085-X
  47. B. J. Wood and K.M. Sancier, Catal. Rev. Sci. Eng., 26(2), 233 (1984). https://doi.org/10.1080/01614948408078065
  48. J. Wang, K. Sakanishi, I. Saito, T. Takarada and K. Morishita, Energy Fuels, 19(5), 2114 (2005). https://doi.org/10.1021/ef040089k
  49. M. Matsukata, T. Fujikawa, E. Kikuchi and Y. Morita, Energy Fuels, 2(6), 750 (1988). https://doi.org/10.1021/ef00012a006
  50. J. Kopyscinski, M. Rahman, R. Gupta, C. A. Mims and J. M. Hill, Fuel, 117, 1181 (2014). https://doi.org/10.1016/j.fuel.2013.07.030
  51. J. Wang, M. Jiang, Y. Yao, Y. Zhang and J. Cao, Fuel, 88(9), 1572 (2009). https://doi.org/10.1016/j.fuel.2008.12.017
  52. O.C. Kural, (Ed.), Coal: resources, properties, utilization, pollution, Istanbul Technical University (1994).
  53. D. Tristantini, D. Supramono and R.K. Suwignjo, Int. J. Technol., 6, 22 (2015). https://doi.org/10.14716/ijtech.v6i1.208
  54. A. Kumar, D. D. Jones and M.A. Hanna, Energies, 2(3), 556 (2009). https://doi.org/10.3390/en20300556
  55. W. J. Lee and S.D. Kim, Fuel, 74(9), 1387 (1995). https://doi.org/10.1016/0016-2361(95)00081-F
  56. W. J. Lee, S.D. Kim and B. H. Song, Korean J. Chem. Eng., 18(5), 640 (2001). https://doi.org/10.1007/BF02706380
  57. M. Vajpeyi, S.K. Awasthi and G. N. Pandey, Energy, 11(6), 563 (1986). https://doi.org/10.1016/0360-5442(86)90104-0
  58. K. Miura, K. Hashimoto and P. L. Silveston, Fuel, 68(11), 1461 (1989). https://doi.org/10.1016/0016-2361(89)90046-X
  59. S. Kasaoka, Y. Sakata and C. Tong, Int. Chem. Eng.; (United States), 25(1) (1985).
  60. F. Bustamante, R. M. Enick, A.V. Cugini, R. P. Killmeyer, B. H. Howard, K. S. Rothenberger, M.V. Ciocco, B.D. Morreale, S. Chattopadhyay and S. Shi, AIChE J., 50(5), 1028 (2004). https://doi.org/10.1002/aic.10099
  61. D. H. Lee, H. Yang, R. Yan and D.T. Liang, Fuel, 86(3), 410 (2007). https://doi.org/10.1016/j.fuel.2006.07.020
  62. H. Thunman, F. Niklasson, F. Johnsson and B. Leckner, Energy Fuels, 15(6), 1488 (2001). https://doi.org/10.1021/ef010097q
  63. F. Yan, S.Y. Luo, Z.Q. Hu, B. Xiao and G. Cheng, Bioresour. Technol., 101(14), 5633 (2010). https://doi.org/10.1016/j.biortech.2010.02.025
  64. M. Ishida and C.Y. Wen, AIChE J., 14(2), 311 (1968). https://doi.org/10.1002/aic.690140218
  65. C.Y. Wen, Ind. Eng. Chem., 60(9), 34 (1968).
  66. B. H. Song, Y.W. Jang and Y. S. Byeon, Korean Chem. Eng. Res., 41(3), 19 (2003).
  67. D.A. Fox and A. H. White, Ind. Eng. Chem., 23(3), 259 (1931). https://doi.org/10.1021/ie50255a011
  68. D.W. McKee and D. Chatterji, Carbon, 13(5), 381 (1975). https://doi.org/10.1016/0008-6223(75)90006-8
  69. D.A. Sams, T. Talverdian and F. Shadman, Fuel, 64(9), 1208 (1985). https://doi.org/10.1016/0016-2361(85)90176-0
  70. T. Wigmans, H. Haringa and J. A. Moulijn, Fuel, 62(2), 185 (1983). https://doi.org/10.1016/0016-2361(83)90195-3
  71. J. Wang, K. Sakanishi, I. Saito, T. Takarada and K. Morishita, Energy Fuels, 19(5), 2114 (2005). https://doi.org/10.1021/ef040089k
  72. J. Wang, Y. Yao, J. Cao and M. Jiang, Fuel, 89(2), 310 (2010). https://doi.org/10.1016/j.fuel.2009.09.001
  73. I. L. Freriks, H. M. van Wechem, J. C. Stuiver and R. Bouwman, Fuel, 60(6), 463 (1981). https://doi.org/10.1016/0016-2361(81)90104-6
  74. Q. Liu, H. Hu, Q. Zhou, S. Zhu and G. Chen, Fuel, 83(6), 713 (2004). https://doi.org/10.1016/j.fuel.2003.08.017
  75. S. J. Seo, S. J. Lee and J.M. Sohn, Clean Technol., 20(1), 72 (2014). https://doi.org/10.7464/ksct.2014.20.1.072
  76. A. Sharma, T. Takanohashi and I. Saito, Fuel, 87(12), 2686 (2008). https://doi.org/10.1016/j.fuel.2008.03.010
  77. C. Lee, S. M. Cho, Y.D. Yoo and Y. Yun, Korea Soc. Energy Eng., 143 (2005).

Cited by

  1. Coal structure change by ionic liquid pretreatment for enhancement of fixed-bed gasification with steam and CO2 vol.35, pp.2, 2017, https://doi.org/10.1007/s11814-017-0296-6
  2. Photoreduction of CO2 into CH4 using Bi2S3-TiO2 double-layered dense films vol.35, pp.5, 2017, https://doi.org/10.1007/s11814-018-0007-y
  3. Na2CO3 catalyzed CO2 gasification of coal char and its intermediate complexes vol.44, pp.12, 2017, https://doi.org/10.1007/s11164-018-3586-7