DOI QR코드

DOI QR Code

Hydrocracking of waste lubricant into gasoline fraction over CoMo catalyst supported on mesoporous carbon from bovine bone gelatin

  • Received : 2016.08.09
  • Accepted : 2017.06.20
  • Published : 2017.10.01

Abstract

The hydrocracking of waste lubricant into gasoline fraction was carried out using CoMo catalyst supported on mesoporous carbon. The carbon was synthesized using bovine bone gelatin and SBA-15 as a template. The metals were loaded onto the carbon by wet impregnation method. The total metal content of catalyst was prepared into two different amounts which were labelled as CoMo/MCG1 and CoMo/MCG2. Catalytic activity and selectivity were evaluated in hydrocracking of waste lubricant at 450, 475, and $500^{\circ}C$, and lubricant/catalyst weight ratio of 50, 100, 200, 300, and 400. The result revealed that acidity and specific surface area of the catalyst played an important role in determining the catalytic performance in the hydrocracking of waste lubricant. The highest percentage of gasoline fraction was 58.09%, produced by hydrocracking of waste lubricant at $475^{\circ}C$ and lubricant/catalyst weight ratio of 300 using CoMo/MCG2 catalyst.

Keywords

References

  1. A. Permsubscul, T. Vitidsant and S. Damronglerd, Korean J. Chem. Eng., 24(1), 37 (2006).
  2. W. Trisunaryanti, S. Purwono and A. Putranto, Indo. J. Chem., 8(3), 342 (2008).
  3. W. Trisunaryanti, A. Syoufian and S. Purwono, J. Chem. Chem. Eng., 7, 175 (2013).
  4. M. Egorova and R. Prins, J. Catal., 225, 417 (2004). https://doi.org/10.1016/j.jcat.2004.05.002
  5. M. Hussain, K. S. Song, H. J. Lee and K. S. Ihm, Ind. Eng. Chem. Res., 45, 536 (2006). https://doi.org/10.1021/ie058064b
  6. Y. Boukoberine and B. Hamada, Arabian J. Chem., 9(1), 522 (2016). https://doi.org/10.1016/j.arabjc.2011.06.018
  7. E. Soghrati, M. Kazemeini, M.A. Rashidi and J. K. Jozani, Procedia Eng., 42, 1484 (2012). https://doi.org/10.1016/j.proeng.2012.07.541
  8. W. Sriningsih, M. G. Saerodji, W. Trisunaryanti, R. Armunanto and I. I. Falah, Procedia Environ. Sci., 20, 215 (2014). https://doi.org/10.1016/j.proenv.2014.03.028
  9. Y. Fan, J. Lu, G. Shi, H. Liu and X. Bao, Catal. Today, 125, 220 (2007). https://doi.org/10.1016/j.cattod.2007.02.022
  10. M. Hussain and S. Ihm, Ind. Eng. Chem. Res., 3, 698 (2009).
  11. X. He, Y. Zhang, C. Zhu, H. Huang, H. Hu, Y. Liu and Z. Kang, New. J. Chem. (2015), DOI:10.1039/C5NJ01430A.
  12. D.-H. Yeom, J. Choi, W. J. Byun and J. K. Lee, Korean J. Chem. Eng., 33, 3029 (2016). https://doi.org/10.1007/s11814-016-0170-y
  13. A. Lu, W. Li, W. Schmidt, W. Kiefer and S. Ferdi, Carbon, 42, 2939 (2004). https://doi.org/10.1016/j.carbon.2004.07.006
  14. B. Sakintuna and Y. Yurum, Micropor. Mesopor. Mater., 93, 304 (2006). https://doi.org/10.1016/j.micromeso.2006.03.013
  15. K. Kamegawa, M. Kodama, K. Nishikubo, H. Yamada, Y. Adachi and H. Yoshida, Micropor. Mesopor. Mater., 87, 118 (2005). https://doi.org/10.1016/j.micromeso.2005.07.031
  16. V. P. Vigon, M. Sevilla and A.B. Fuertes, Appl. Surf. Sci., 261, 574 (2012). https://doi.org/10.1016/j.apsusc.2012.08.059
  17. M. Ulfa, W. Trisunaryanti, I. I. Falah, I. Kartini and Sutarno, JAC, 7(5), 1 (2014).
  18. J. Lee, S. Hwang, S.B. Lee and I. K. Song, Korean J. Chem. Eng., 27(6), 1755 (2010). https://doi.org/10.1007/s11814-010-0279-3
  19. J. S. Jung, T. J. Kim and G. Seo, Korean J. Chem. Eng., 21(4), 777 (2004). https://doi.org/10.1007/BF02705520
  20. J.M. Ramos, J. A. Wang, L. F. Chen, U. Arellano, S. P. Ramirez, R. Sotelo and P. Schachat, Catal. Commun., 72, 57 (2015). https://doi.org/10.1016/j.catcom.2015.09.007
  21. S. Ahmadi, Z. Yuan, S. Rohani and C. Xu, Catal. Today, 269, 182 (2016). https://doi.org/10.1016/j.cattod.2015.08.040
  22. M.T. Le, V. H. Do, D.D. Truong, L. Bruneel, I.V. Driessche, A. Riisager, R. Fehrmann and Q.T. Tinh, Ind. Eng. Chem. Res., 55, 4846 (2016). https://doi.org/10.1021/acs.iecr.6b00019
  23. T. Maiyalagan, A.B. Nassr, T.O. Alaje, M. Bron and K. Scott, J. Power Sources, 211, 147 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.001
  24. S.T. Sie, Ind. Eng. Chem. Res., 31, 1881 (2003).
  25. G. Chandrasekar, W. J. Son and W. S. Ahn, J. Porous Mater., 16, 545 (2009). https://doi.org/10.1007/s10934-008-9231-x
  26. J. Lee, Y. Choi, J. Shin and J. K. Lee, Catal. Today (2015), DOI:10.1016/j.cattod.2015.09.046.
  27. A. Ishihara, S. Tanaka, M. Aiba, T. Hashimoto and H. Nasu, J. Jpn. Petrol. Inst., 58, 2 (2015).
  28. J. Yang, Y. Dong, J. Li, Z. Liu, F. Min and Y. Li, Korean J. Chem. Eng., 32, 2247 (2015). https://doi.org/10.1007/s11814-015-0072-4

Cited by

  1. Well-dispersed nickel nanoparticles on the external and internal surfaces of SBA-15 for hydrocracking of pyrolyzed α-cellulose vol.9, pp.3, 2019, https://doi.org/10.1039/c8ra09034c
  2. Hydrocracking of LDPE Plastic Waste into Liquid Fuel over Sulfated Zirconia from a Commercial Zirconia Nanopowder vol.35, pp.1, 2017, https://doi.org/10.13005/ojc/350113
  3. Template-Free Synthesis of Porous Carbon from Merbau Wood by H2O2-ZnCl2 Hydrothermal Treatment vol.32, pp.4, 2017, https://doi.org/10.14233/ajchem.2020.22460
  4. The effect of nitrogen species on the catalytic properties of N-doped graphene vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-03403-8