DOI QR코드

DOI QR Code

Thermogravimetric study for the co-combustion of coal and dried sewage sludge

  • Park, Jeong Min (Department of Environmental Engineering, Chungbuk National University) ;
  • Keel, Sangin (Environment Research Division, Korea Institute of Machinery & Materials) ;
  • Yun, Jinhan (Environment Research Division, Korea Institute of Machinery & Materials) ;
  • Yun, Ji Hye (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Sang-Sup (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2016.11.17
  • Accepted : 2017.05.11
  • Published : 2017.08.01

Abstract

The co-combustion of dried sewage sludge with coal is a promising method to dispose of and treat sewage sludge waste. Because sewage sludge has a different elemental composition than coal, the co-combustion of sewage sludge with coal may have different combustion characteristics than the single combustion of coal. In this study, the co-combustion of dried sewage sludge with coal was tested varying heating rates and mixing ratios of the dried sewage sludge. The results were analyzed using thermogravimetric (TG) and derivative thermogravimetric (DTG) curves and modeled using Ozawa-Flynn-Wall and Vyazovkin models. The mixed samples of coal and dried sewage sludge showed similar TG curves to the coal sample. The co-combustion showed activation energies close to that of the single coal combustion. This suggests that the co-combustion of coal and dried sewage sludge has similar combustion behavior to the single combustion of coal for mixing percentages of dried sewage sludge up to 20%.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. M. Otero, C. Diez, L.F. Calvo, A. I. Garcia and A. Moran, Biomass Bioenergy, 22, 319 (2002). https://doi.org/10.1016/S0961-9534(02)00012-0
  2. D. Chung, J.Y. Lee, J.G. Kang, M.Y. Lee, C.W. Yoon, H.Y. Yoo, S. S. Rhee, K. H. Park, S. K. Shin and G. j. Oh, NIER, 264 (2012).
  3. J. H. Kang, J.Y. Kang, S. H. Lee, B.T. Kim and N. H. Lee, Journal of the Organic Resource Recycling Association, 22, 11 (2014). https://doi.org/10.17137/Korrae.2014.22.4.011
  4. Z. Yang, Y. Zhang, L. Liu, X. Wang and Z. Zhang, Waste Manage., 50, 213 (2016). https://doi.org/10.1016/j.wasman.2015.11.011
  5. Z. Yang, Y. Zhang, L. Liu, S. Seetharaman and X. Wang, Materials, 9, 275 (2016). https://doi.org/10.3390/ma9040275
  6. R. Wang, Z. Zhao, L. Qiu and J. Liu, Fuel Process. Technol., 156, 271 (2017). https://doi.org/10.1016/j.fuproc.2016.09.007
  7. M.Y. Kim, J.K. Kim, H.D. Lee and S.C. Kim, J. Appl. Chem., 13, 93 (2009).
  8. M. Otero, L.F. Calvo, M.V. Gil, A. I. Garcia and A. Moran, Biore-sour. Technol., 99, 6311 (2008). https://doi.org/10.1016/j.biortech.2007.12.011
  9. M. B. Folgueras, M.D. Ramona, X. Jorge and P. Ismael, Fuel, 82, 2051 (2003). https://doi.org/10.1016/S0016-2361(03)00161-3
  10. M. Venkatesh, P. Ravi and S. P. Tewari, J. Phys. Chem. A, 117, 10162 (2013). https://doi.org/10.1021/jp407526r
  11. K.D. Lee, T.U. Ryu and S.W. Park, J. Environ. Sci. Int., 22, 331 (2013). https://doi.org/10.5322/JESI.2013.22.3.331
  12. S. Vyazovkin, J. Therm. Anal. Calorim., 83, 45 (2006). https://doi.org/10.1007/s10973-005-7044-6
  13. S. Vyazovkin, Thermochim. Acta, 340-341, 53 (1999). https://doi.org/10.1016/S0040-6031(99)00253-1
  14. J.M. Park, S. I. Keel, J. H. Yun, J. H. Yun, D. S. Oh and S. S. Lee, J. Korea Soc. Waste Manage., 33, 461 (2016). https://doi.org/10.9786/kswm.2016.33.5.461
  15. Y. Lin, Y. Liao, Z. Yu, S. Fang and X. Ma, Thermochim. Acta, 653, 71 (2017). https://doi.org/10.1016/j.tca.2017.04.003
  16. A. B. Hernandez, F. Okonta and N. Freeman, J. Environ. Manage., 196, 560 (2017). https://doi.org/10.1016/j.jenvman.2017.03.036
  17. N. Vhathvarothai, J. Ness and J. Yu, Int. J. Energy Res., 38, 804 (2014). https://doi.org/10.1002/er.3083
  18. E.C. Okoroigwe, S. Enibe and S. Onyegegbu, J. Energy South Afr., 27, 39 (2016).
  19. K. Jayaraman, M.V. Kok and I. Gokalp, Renew. Energy, 101, 293 (2017). https://doi.org/10.1016/j.renene.2016.08.072

Cited by

  1. Study of Sewage Sludge/Coal Co-Combustion by Thermogravimetric Analysis and Single Particle Co-Combustion Method vol.32, pp.5, 2017, https://doi.org/10.1021/acs.energyfuels.8b00511
  2. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas vol.68, pp.10, 2017, https://doi.org/10.1080/10962247.2018.1468364
  3. Purified high‐sulfur coal as a fuel for direct carbon solid oxide fuel cells vol.43, pp.7, 2017, https://doi.org/10.1002/er.4004
  4. 순환유동층 보일러 로내 탈황을 위한 석회석 평가 vol.57, pp.6, 2017, https://doi.org/10.9713/kcer.2019.57.6.853