DOI QR코드

DOI QR Code

Facile synthesis of tungsten carbide-carbon composites for oxygen reduction reaction

  • Sohn, Yeonsun (School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University) ;
  • Jung, Jae Young (School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University) ;
  • Kim, Pil (School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University)
  • Received : 2017.02.02
  • Accepted : 2017.05.01
  • Published : 2017.08.01

Abstract

Tungsten carbide-carbon composite (XWC-C, where X=10 or 30 represents the tungsten content) supports were prepared by pyrolyzing tungsten-adsorbed poly(4-vinylpyridine)-functionalized carbon. The supports were used to prepare Pt catalysts (Pt/XWC-C) for oxygen reduction reactions (ORR) in alkaline solution. Prepared XWC-C revealed highly dispersed tungsten carbide species composed of WC and $W_2C$ phases. The tungsten carbide species proved to have a positive effect on the dispersion of Pt particles. Compared to the Pt catalyst supported on carbon (Pt/C), Pt/XWC-C showed higher ORR performance. In addition, the catalytic performance of Pt/XWC-C was enhanced with increasing tungsten carbide content. The highest ORR activity was achieved for the Pt/30WC-C catalyst, which had a 2.9-fold enhanced performance (at 0.8 V vs. RHE) compared to that of Pt/C. It is believed that the unique interaction between Pt and the tungsten carbide species was responsible for the enhanced ORR performance of the Pt/XWC-C catalysts.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. R. L. Levy and M. Boudart, Science, 181, 547 (1973). https://doi.org/10.1126/science.181.4099.547
  2. F. H. Ribeiro, R. A. Dalla Betta, G. J. Guskey and M. Budart, Chem. Mater., 3, 805 (1991). https://doi.org/10.1021/cm00017a015
  3. J.G. Chen, Chem. Rev., 96, 1477 (1996). https://doi.org/10.1021/cr950232u
  4. M. L. H. Green, T. Xiao, A. P. E. York and V. C. Williams, Chem. Mater., 12, 3869 (2000).
  5. R. Venkataraman, H.R. Kunz and J.M. Fenton, J. Electrochem. Soc., 150, A287 (2003).
  6. T. H. Nguyen, A. A. Adesina, E. M.T. Yue, Y. J. Lee, A. Khodakov and M. P. Brungs, J. Chem. Technol. Biot., 79, 286 (2004). https://doi.org/10.1002/jctb.994
  7. J.D. Oxley, M. M. Mdleleni and K. S. Suslick, Catal. Today, 88, 139 (2004). https://doi.org/10.1016/j.cattod.2003.11.010
  8. X. G. Yang and C.Y. Wang, Appl. Phys. Lett., 86, 224104 (2005). https://doi.org/10.1063/1.1941473
  9. A.R. Ko, Y.W. Lee, J. S. Moon, S.B. Han, G. Cao and K.W. Park, Appl. Catal. A-Gen., 477, 102 (2014). https://doi.org/10.1016/j.apcata.2014.02.034
  10. H. H. Nersisyan, H. I. Won and C.W. Won, Mater. Lett., 59, 3950 (2005). https://doi.org/10.1016/j.matlet.2005.07.042
  11. H. Zheng, J. Huang, W. Wang and C. Ma, Electrochem. Commun., 7, 1045 (2005). https://doi.org/10.1016/j.elecom.2005.07.011
  12. M. Shaobo, Y. Yezhi, W. longbiao, W. Jun and H. Qinggan, J. Chem. Phys., 13, 487 (2000).
  13. C. Tianyi, Z. Bohong, C. Wenbo and L. Yao, Electrochemistry, 3, 343 (2002).
  14. N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang and J. G. Chen, Angew. Chem. Int. Edit., 120, 8638 (2008). https://doi.org/10.1002/ange.200803233
  15. N.C. Adriana, A. S. M. Sergio and A. A. Luis, Electrochem. Commun., 1, 600 (1999). https://doi.org/10.1016/S1388-2481(99)00122-8
  16. Y. Wang, S. Song, V. Maragou and P. K. Shen, Appl. Catal. B: Environ., 89, 223 (2009). https://doi.org/10.1016/j.apcatb.2008.11.032
  17. H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 179, 50 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.105
  18. J. B. Joo, J.S. Kim, P. Kim and J. Yi, Mater. Lett., 62, 3497 (2008). https://doi.org/10.1016/j.matlet.2008.03.009
  19. C. Ma, J. Sheng, N. Brandon, C. Zhang and G. Li, Int. J. Hydrogen Energy, 32, 2824 (2007). https://doi.org/10.1016/j.ijhydene.2006.12.022
  20. Y. Liu and W. E. Mustain, ACS Catal., 1, 212 (2011). https://doi.org/10.1021/cs100140s
  21. H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 164, 431 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.003
  22. G. Cui, P. K. Shen, H. Meng, J. Zhao and G. Wu, J. Power Sources, 196, 6125 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.042
  23. Z. J. Mellinger, E. C. Weigert, A. L. Stottlemyer and J. G. Chen, Electrochem. Solid State Lett., 11, B63 (2008). https://doi.org/10.1149/1.2844209
  24. T. E. Shubina and M.T.M. Koper, Electrochim. Acta, 47, 3621 (2002). https://doi.org/10.1016/S0013-4686(02)00332-8
  25. R. Ganesan and J. S. Lee, Angew. Chem. Int. Edit., 44, 6557 (2005). https://doi.org/10.1002/anie.200501272
  26. R. Ganesan and J. S. Lee, J. Power Sources, 157, 217 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.069
  27. S. Zhao, A.E. Wangstrom, Y. Liu, W.A. Rigdon and W.E. Mustain, Electrochim. Acta, 157, 175 (2015). https://doi.org/10.1016/j.electacta.2015.01.030
  28. B. B. Blizanac, P. N. Ross and N. M. Markovic, Electrochim. Acta, 52, 2264 (2007). https://doi.org/10.1016/j.electacta.2006.06.047
  29. H. Meng and P. K. Shen, Electrochem. Commun., 8, 588 (2006). https://doi.org/10.1016/j.elecom.2006.01.020
  30. N.R. Elezovic, B. M. Babic, L. Gajic-Krstajic, P. Ercius, V.R. Radmilovic, N.V. Krstajic and L.M. Vracar, Electrochim. Acta, 69, 239 (2012). https://doi.org/10.1016/j.electacta.2012.02.105
  31. H. Meng and P. K. Shen, Chem. Commun., 1, 4408 (2005).
  32. J.R. Varcoe and R.C.T. Slade, Fuel Cells, 5, 187 (2005). https://doi.org/10.1002/fuce.200400045
  33. X. Ma, H. Meng, M. Cai and P. K. Shen, J. Am. Chem. Soc., 134, 1954 (2012). https://doi.org/10.1021/ja2093053
  34. H. Meng and P. K. Shen, J. Phys. Chem. B, 109, 22705 (2005). https://doi.org/10.1021/jp054523a
  35. P.N. Ross and P. Stonehart, J. Catal., 48, 42 (1977). https://doi.org/10.1016/0021-9517(77)90076-8
  36. H. Meng, M. Wu, X. X. Hu, M. Nie, Z.D. Wei and P. K. Shen, Fuel Cells, 6, 447 (2006). https://doi.org/10.1002/fuce.200600007
  37. W. Zhu, A. Ignaszak, C. Song, R. Baker, R. Hui, J. Zhang, F. Nan, G. Botton, S. Ye and S. Campbell, Electrochim. Acta, 61, 198 (2012). https://doi.org/10.1016/j.electacta.2011.12.005
  38. E.C. Weigert, A. L. Stottlemyer, M.B. Zellner and J. G. Chen, J. Phys. Chem. C, 111, 14617 (2007). https://doi.org/10.1021/jp075504z
  39. E.C. Weigert, D.V. Esposito and J. G. Chen, J. Power Sources, 193, 501 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.020
  40. H.H. Hwu, K. Kourtakis, J.G. Lavin and J.G. Chen, J. Phys. Chem. B, 105, 10037 (2001).
  41. M.B. Zellnera and J. G. Chen, J. Electrochem. Soc., 152, A1483 (2005). https://doi.org/10.1149/1.1938107
  42. N. Liu, K. Kourtakis, J.C. Figueroa and J.G. Chen, J. Catal., 215, 254 (2003). https://doi.org/10.1016/S0021-9517(03)00019-8
  43. D. J. Ham, Y. K. Kim, S. H. Han and J. S. Lee, Catal. Today, 132, 117 (2008). https://doi.org/10.1016/j.cattod.2007.12.076
  44. H. Zheng, Z. Gu, J. Zhong and W. Wang, J. Mater. Sci. Technol., 23, 591 (2007).
  45. M.K. Jeona, K.R. Lee, W. S. Lee, H. Daimon, A. Nakahara and S. I. Woo, J. Power Sources, 185, 927 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.067
  46. C.A. Angelucci, L. J. Deiner and F. C. Nart, J. Solid State Electrochem., 12, 1599 (2008). https://doi.org/10.1007/s10008-007-0495-x
  47. N. Keller, B. Pietruszka and V. Keller, Mater. Lett., 60, 1774 (2006). https://doi.org/10.1016/j.matlet.2005.12.017
  48. H. E. Sliney, Tribol. Int., 15, 303 (1982). https://doi.org/10.1016/0301-679X(82)90089-5
  49. F. P. Hu, F.W. Ding, S.Q. Song and P. K. Shen, J. Power Sources, 163, 415 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.039
  50. M. Nie, P. K. Shen and Z.D. Wei, J. Power Sources, 167, 69 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.059
  51. M. J. Hudson, J.W. Peckett and P. J. F. Harris, Ind. Eng. Chem. Res., 44, 5575 (2005). https://doi.org/10.1021/ie040247v
  52. C. Liang, F. Tian, Z. Wei, Q. Xin and C. Li, Nanotechnology, 14, 9 (2003). https://doi.org/10.1088/0957-4484/14/3/201
  53. R. Koc and S.K. Kodambaka, J. Eur. Ceram. Soc., 20, 1859 (2000). https://doi.org/10.1016/S0955-2219(00)00038-8
  54. G.M. Wang, S. J. Campbell, A. Calka and W. A. Kaczmarek, J. Mater. Sci., 32, 1461 (1997). https://doi.org/10.1023/A:1018501916988
  55. F. L. Zhang, M. Zhu and C.Y. Wang, Int. J. Refract. Met. H., 26, 329 (2008). https://doi.org/10.1016/j.ijrmhm.2007.08.005
  56. S. Beak, D. Jung, K. S. Nahm and P. Kim, Catal. Lett., 134, 288 (2010). https://doi.org/10.1007/s10562-009-0235-1
  57. C. B. Rodella, D. H. Barrett, S. F. Moya, S. J. A. Figueroa, M.T.B. Pimenta, A.A. S. Curvelo and V.T. Silva, RSC Adv., 5, 23874 (2015). https://doi.org/10.1039/C5RA03252K
  58. R. Wang, C. Tian, L. Wang, B. Wang, H. Zhang and H. Fu, Chem. Commun., 1, 3104 (2009).
  59. D.G. Barton, S. L. Soled and E. Iglesia, Top. Catal., 6, 87 (1998). https://doi.org/10.1023/A:1019126708945
  60. D. Jung, S. Beak, K.S. Nahm and P. Kim, Korean J. Chem. Eng., 27, 1689 (2010). https://doi.org/10.1007/s11814-010-0292-6
  61. B. Li and J. Prakash, Electrochem. Commun., 11, 1162 (2009). https://doi.org/10.1016/j.elecom.2009.03.037
  62. S. J. Bae, S. J. Yoo, Y. Lim, S. Kim, Y. Lim, J. Choi, K. S. Nahm, S. J. Hwang, T. H. Lim, S. K. Kim and P. Kim, J. Mater. Chem., 22, 8820 (2012). https://doi.org/10.1039/c2jm16827h
  63. Y. Hara, N. Minami, H. Matsumoto and H. Itagaki, Appl. Catal. AGen., 332, 289 (2007). https://doi.org/10.1016/j.apcata.2007.08.030

Cited by

  1. Novel combustion-carbonization preparation of mesoporous tungsten carbide as a highly active catalyst for oxygen reduction vol.44, pp.10, 2017, https://doi.org/10.1039/c9nj05145g
  2. A comparative study of undoped, boron-doped, and boron/fluorine dual-doped carbon nanoparticles obtained via solution plasma as catalysts for the oxygen reduction reaction vol.4, pp.9, 2020, https://doi.org/10.1039/d0se00708k
  3. Growing Tungsten Nanophases on Carbon Spheres Doped with Nitrogen. Behaviour as Electro-Catalysts for Oxygen Reduction Reaction vol.14, pp.24, 2017, https://doi.org/10.3390/ma14247716