DOI QR코드

DOI QR Code

Quantification of the risk for hydrate formation during cool down in a dispersed oil-water system

  • Kwak, Gye-Hoon (Hydrates Energy Innovation Laboratory, Department of Chemical & Biological Engineering, Colorado School of Mines) ;
  • Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science & Technology) ;
  • Lee, Bo Ram (Hydrates Energy Innovation Laboratory, Department of Chemical & Biological Engineering, Colorado School of Mines) ;
  • Sum, Amadeu K. (Hydrates Energy Innovation Laboratory, Department of Chemical & Biological Engineering, Colorado School of Mines)
  • Received : 2017.02.09
  • Accepted : 2017.04.12
  • Published : 2017.07.01

Abstract

Gas hydrates are considered a nuisance in the flow assurance of oil and gas production since they can block the flowlines, consequently leading to significant losses in production. Hydrate avoidance has been the traditional approach, but recently, hydrate management is gaining acceptance because the practice of hydrate avoidance has become more and more challenging. For better management of hydrate formation, we investigated the risk of hydrate formation based on the subcooling range in which hydrates form by associating low, medium, and high probability of formation for a gas+oil+water system. The results are based on batch experiments which were performed in an autoclave cell using a mixture gas ($CH_4:C_3H_8=91.9:8.1mol%$), total liquid volume (200 ml), mineral oil, watercut (30%), and mixing speed (300 rpm). From the measurements of survival curves showing the minimum subcooling required before hydrate can form and hydrate conversion rates for the initial 20 minutes, we developed a risk map for hydrate formation.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF), National Research Foundation of Korea (NRF)

References

  1. E. Dendy Sloan Jr and Carolyn Koh, Clathrate Hydrates of Natural Gases, 3rd Ed., CRC Press (2007).
  2. E.G. Hammerschmidt, Ind. Eng. Chem., 26, 851 (1934). https://doi.org/10.1021/ie50296a010
  3. E.D. Sloan, C. Koh and A.K. Sum, Natural Gas Hydrates in Flow Assurance, Elsevier, Amsterdam (2010).
  4. P.D. Dholabhai, J. S. Parent and P.R. Bishnoi, Ind. Eng. Chem. Res., 35, 819 (1996). https://doi.org/10.1021/ie950136j
  5. A. H. Mohammadi, W. Afzal and D. Richon, J. Chem. Eng. Data, 53, 73 (2008). https://doi.org/10.1021/je700383p
  6. A. Majumdar, E. Mahmoodaghdam and P.R. Bishnoi, J. Chem. Eng. Data, 45, 20 (2000). https://doi.org/10.1021/je990182g
  7. W. Afzal, A. H. Mohammadi and D. Richon, J. Chem. Eng. Data, 53, 663 (2008). https://doi.org/10.1021/je700457r
  8. W. Afzal, A. H. Mohammadi and D. Richon, J. Chem. Eng. Data, 52, 2053 (2007). https://doi.org/10.1021/je700170t
  9. K. Shin, J. Kim, Y.-T. Seo and S.-P. Kang, Korean J. Chem. Eng., 31, 2177 (2014). https://doi.org/10.1007/s11814-014-0141-0
  10. A. Vysniauskas and P.R. Bishnoi, Chem. Eng. Sci., 38, 1061 (1983). https://doi.org/10.1016/0009-2509(83)80027-X
  11. P.R. Bishnoi, A.K. Gupta, P. Englezos and N. Kalogerakis, Fluid Phase Equilib., 53, 97 (1989). https://doi.org/10.1016/0378-3812(89)80076-7
  12. P.R. Bishnoi and V. Natarajan, Fluid Phase Equilibr., 117, 168 (1996). https://doi.org/10.1016/0378-3812(95)02950-8
  13. D. Lee, Y. Lee, S. Lee and Y. Seo, Korean J. Chem. Eng., 33, 1425 (2016). https://doi.org/10.1007/s11814-015-0268-7
  14. E.D. Sloan, Fluid Phase Equilib., 228-229, 67 (2005). https://doi.org/10.1016/j.fluid.2004.08.009
  15. K. Kinnari, J. Hundseid, X. Li and K. M. Askvik, J. Chem. Eng. Data, 60, 437 (2015). https://doi.org/10.1021/je500783u
  16. E.O. Straume, C. Kakitani, D. Merino-Garcia, R.E.M. Morales and A. K. Sum, Chem. Eng. Sci., 155, 111 (2016). https://doi.org/10.1016/j.ces.2016.07.046
  17. N. Maeda, D. Wells, N. C. Becker, P. G. Hartley, P.W. Wilson, A.D. J. Haymet and K.A. Kozielski, Rev. Sci. Instrum., 82, 065109 (2011). https://doi.org/10.1063/1.3602926
  18. N. Maeda, D. Wells, P. G. Hartley and K.A. Kozielski, Energy Fuels, 26, 1820 (2012). https://doi.org/10.1021/ef201965z
  19. N. Maeda, Fluid Phase Equilib., 413, 142 (2016). https://doi.org/10.1016/j.fluid.2015.12.011
  20. P.W. Wilson, A. F. Heneghan and A.D. J. Haymet, Cryobiology, 46, 88 (2003). https://doi.org/10.1016/S0011-2240(02)00182-7
  21. P.W. Wilson, D. Lester and A.D. J. Haymet, Chem. Eng. Sci., 60, 2937 (2005). https://doi.org/10.1016/j.ces.2004.12.047
  22. P. Linga, R. Kumar and P. Englezos, Chem. Eng. Sci., 62, 4268 (2007). https://doi.org/10.1016/j.ces.2007.04.033

Cited by

  1. Phase Behavior and Raman Spectroscopic Analysis for CH4 and CH4/C3H8 Hydrates Formed from NaCl Brine and Monoethylene Glycol Mixtures vol.63, pp.6, 2017, https://doi.org/10.1021/acs.jced.8b00155
  2. Hydrate Induction Time with Temperature Steps: A Novel Method for the Determination of Kinetic Parameters vol.33, pp.7, 2017, https://doi.org/10.1021/acs.energyfuels.9b00875
  3. Swapping and Enhancement of Guest Occupancies in Hydroquinone Clathrates Using CH4 and CO2 vol.33, pp.7, 2019, https://doi.org/10.1021/acs.energyfuels.9b01200