DOI QR코드

DOI QR Code

Synthesis of polyaniline based composite material and its analytical applications for the removal of highly toxic Hg2+ metal ion: Antibacterial activity against E. coli

  • Bushra, Rani (Department of Applied Physics, Aligarh Muslim University) ;
  • Naushad, Mu. (Advanced Materials Research Chair, Department of Chemistry, College of Science, Bld#5, King Saud University) ;
  • Sharma, Gaurav (School of Chemistry, Shoolini University) ;
  • Azam, Ameer (Department of Applied Physics, Aligarh Muslim University) ;
  • ALOthman, Zeid Abdullah (Advanced Materials Research Chair, Department of Chemistry, College of Science, Bld#5, King Saud University)
  • Received : 2016.09.01
  • Accepted : 2017.03.16
  • Published : 2017.07.01

Abstract

A composite material polyaniline-Zr(IV) phosphoborate (PZPB) was synthesized via sol-gel method by the combination of Zr(IV) phosphoborate and polyaniline. The PZPB composite material was characterized by various analytical techniques. The PZPB composite material was found to be selective for $Hg^{2+}$ metal ion due to the high distribution coefficient values for $Hg^{2+}$ metal ion in all mediums. The PZPB composite material was used for $Hg^{2+}$ removal under different experimental conditions. The antibacterial activity of PZPB composite material was also studied against E. coli.

Keywords

Acknowledgement

Supported by : Aligarh Muslim University, King Saud University

References

  1. Z. A. ALOthman and M. Naushad, Des. Water Treat, 53, 2158 (2105).
  2. A. A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z.A. ALOthman and S.M. Alshehri, RSC Adv., 6, 22679 (2016). https://doi.org/10.1039/C5RA27525C
  3. G. Sharma, A. Kumar, M. Naushad, D. Pathania and M. Sillanpaa, J. Ind. Eng. Chem., 33, 201 (2016). https://doi.org/10.1016/j.jiec.2015.10.011
  4. M. Naushad, T. Ahamad, Z.A. ALOthman, M.A. Shar, N. S. AlHokbany and S.M. Alshehri, J. Ind. Eng. Chem., 29, 78 (2015). https://doi.org/10.1016/j.jiec.2015.03.019
  5. M. Naushad, Z.A. ALOthman, G. Sharma and Inamuddin, Ionics (Kiel), 21, 1453 (2015). https://doi.org/10.1007/s11581-014-1292-z
  6. M. Naushad, Z. A. ALOthman, M.R. Awual, M. M. Alam and G. E. Eldesoky, Ionics (Kiel), 21, 2237 (2015). https://doi.org/10.1007/s11581-015-1401-7
  7. A. Shahat, M.R. Awual, M. A. Khaleque, M. Z. Alam, M. Naushad and A. M. S. Chowdhury, Chem. Eng. J., 273, 286 (2015). https://doi.org/10.1016/j.cej.2015.03.073
  8. L. K. Wang, Industrial and Hazardous Waste Treatment, Van Nostrand Reinhold, New York (2006).
  9. C.-G. Lee, S. Lee, J.-A. Park, C. Park, S. J. Lee, S.-B. Kim, B. An, S.-T. Yun, S.-H. Lee and J.-W. Choi, Chemosphere, 166, 203 (2017). https://doi.org/10.1016/j.chemosphere.2016.09.093
  10. C.-H. Yen, H.-L. Lien, J.-S. Chung and H.-D. Yeh, J. Hazard. Mater., 322, 215 (2017). https://doi.org/10.1016/j.jhazmat.2016.02.029
  11. S. Zhang, H. Gao, J. Li, Y. Huang, A. Alsaedi, T. Hayat, X. Xu and X. Wang, J. Hazard. Mater., 321, 92 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.004
  12. C. Xiong, Y. Li, G. Wang, L. Fang, S. Zhou, C. Yao, Q. Chen, X. Zheng, D. Qi, Y. Fu and Y. Zhu, Chem. Eng. J., 259, 257 (2015). https://doi.org/10.1016/j.cej.2014.07.114
  13. Z. Wang, J. Xu, Y. Hu, H. Zhao, J. Zhou, Y. Liu, Z. Lou and X. Xu, J. Taiwan Inst. Chem. Eng., 60, 394 (2016). https://doi.org/10.1016/j.jtice.2015.10.041
  14. N. Saman, K. Johari, S.-T. Song, H. Kong, S.-C. Cheu and H. Mat, Chemosphere, 171, 19 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.049
  15. B. Henriques, C. B. Lopes, P. Figueira, L. S. Rocha, A. C. Duarte, C. Vale, M.A. Pardal and E. Pereira, Chemosphere, 171, 208 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.086
  16. M.R. Awual, M. M. Hasan, G. E. Eldesoky, M. A. Khaleque, M. M. Rahman and M. Naushad, Chem. Eng. J., 290, 243 (2016). https://doi.org/10.1016/j.cej.2016.01.038
  17. S. Wernisch, O. Trapp and W. Lindner, Anal. Chim. Acta, 795, 88 (2013). https://doi.org/10.1016/j.aca.2013.08.004
  18. T.A. Kurniawan, G.Y. S. Chan, W.-H. Lo and S. Babel, Chem. Eng. J., 118, 83 (2006). https://doi.org/10.1016/j.cej.2006.01.015
  19. F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  20. Y.-H. Wang, S.-H. Lin and R.-S. Juang, J. Hazard. Mater., 102, 291 (2003). https://doi.org/10.1016/S0304-3894(03)00218-8
  21. D.W. O'Connell, C. Birkinshaw and T. F. O'Dwyer, Bioresour. Technol., 99, 6709 (2008). https://doi.org/10.1016/j.biortech.2008.01.036
  22. S.A. Nabi, M. Shahadat, R. Bushra, M. Oves and F. Ahmed, Chem. Eng. J., 173, 706 (2011). https://doi.org/10.1016/j.cej.2011.07.081
  23. R. Bushra, M. Naushad, R. Adnan, Z. A. ALOthman and M. Rafatullah, J. Ind. Eng. Chem., 21, 1112 (2015). https://doi.org/10.1016/j.jiec.2014.05.022
  24. R. Bushra, M. Shahadat, A. Ahmad, S. A. Nabi, K. Umar, M. Oves, A. S. Raeissi and M. Muneer, J. Hazard. Mater., 264, 481 (2014). https://doi.org/10.1016/j.jhazmat.2013.09.044
  25. S.A. Nabi, M. Naushad and R. Bushra, Chem. Eng. J., 152, 80 (2009). https://doi.org/10.1016/j.cej.2009.03.033
  26. Inamuddin, S. A. Khan, W. A. Siddiqui and A.A. Khan, Talanta, 71, 841 (2007). https://doi.org/10.1016/j.talanta.2006.05.042
  27. S. Roth and W. Graupner, Synth. Met., 57, 3623 (1993). https://doi.org/10.1016/0379-6779(93)90487-H
  28. S.B. Kondawar, S.R. Thakare, V. Khati and S. Bompilwar, Int. J. Mod. Phys. B, 23, 3297 (2009). https://doi.org/10.1142/S0217979209052583
  29. M. Naushad, Inamuddin and T.A. Rangreez, Des. Water Treat., 55, 463 (2015). https://doi.org/10.1080/19443994.2014.915389
  30. P. Bandyopadhyay, T. Kuila, J. Balamurugan, T.T. Nguyen, N.H. Kim and J. H. Lee, Chem. Eng. J., 308, 1174 (2017). https://doi.org/10.1016/j.cej.2016.10.015
  31. S.A. Nabi, R. Bushra, Z. A. ALOthman and M. Naushad, Sep. Sci. Technol., 46, 847 (2011). https://doi.org/10.1080/01496395.2010.534759
  32. Z.A. ALOthman, M. Naushad and Inamuddin, Chem. Eng. J., 172, 369 (2011). https://doi.org/10.1016/j.cej.2011.06.018
  33. Z.A. ALOthman, Inamuddin and M. Naushad, Chem. Eng. J., 171, 456 (2011). https://doi.org/10.1016/j.cej.2011.03.103
  34. Z.A. ALOthman, M.M. Alam and M. Naushad, J. Ind. Eng. Chem., 19, 956 (2013). https://doi.org/10.1016/j.jiec.2012.11.016
  35. M. J. Hajipour, K.M. Fromm, A.A. Ashkarran, D. J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak and M. Mahmoudi, Trends Biotechnol., 31, 61 (2016).
  36. G. Sharma, D. Pathania and M. Naushad, J. Ind. Eng. Chem., 20, 4482 (2014). https://doi.org/10.1016/j.jiec.2014.02.020
  37. D. Pathania, G. Sharma, A. Kumar, M. Naushad, S. Kalia, A. Sharma and Z.A. ALOthman, Toxicol. Environ. Chem., 97, 526 (2015). https://doi.org/10.1080/02772248.2015.1050024
  38. S.A. Nabi and M. Naushad, Colloids Surfaces A Physicochem. Eng. Asp., 316, 217 (2008). https://doi.org/10.1016/j.colsurfa.2007.09.005
  39. S.A. Nabi and M. Naushad, Colloids Surfaces A Physicochem. Eng. Asp., 293, 175 (2007). https://doi.org/10.1016/j.colsurfa.2006.07.026
  40. M. Naushad, Z. A. ALOthman and M. Islam, Int. J. Environ. Sci. Technol., 10, 567 (2013). https://doi.org/10.1007/s13762-013-0189-0
  41. A.M.K.S.A. Nabi, Ann. Chim. Sci. Mater., 21, 521 (1996).
  42. C.W. Lin, B. J. Hwang and C.R. Lee, Mater. Chem. Phys., 58, 114 (1999). https://doi.org/10.1016/S0254-0584(98)00261-2
  43. A. Choudhury, Sensors Actuators B Chem., 138, 318 (2009). https://doi.org/10.1016/j.snb.2009.01.019
  44. C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York (n.d.).
  45. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th Ed., John Wiley and Sons, New York (1986).
  46. C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam (1963).
  47. A.A. Khan and T. Akhtar, Electrochim. Acta, 53, 5540 (2008). https://doi.org/10.1016/j.electacta.2008.03.002
  48. A. B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker and C. Mangwandi, Chem. Eng. J., 307, 264 (2017). https://doi.org/10.1016/j.cej.2016.08.089
  49. M. Naushad, S. Vasudevan, G. Sharma, A. Kumar and Z. A. ALOthman, Desalin. Water Treat., 57, 18551 (2016). https://doi.org/10.1080/19443994.2015.1090914
  50. M. Naushad, T. Ahamad, G. Sharma, A. H. Al-Muhtaseb, A.B. Albadarin, M. M. Alam, Z. A. ALOthman, S. M. Alshehri and A.A. Ghfar, Chem. Eng. J., 300, 306 (2016). https://doi.org/10.1016/j.cej.2016.04.084
  51. Y. S. Ho, G. Mckay, D.A. J. Wase and C. F. Foster, Ads. Sci. Tech., 18, 639 (2000). https://doi.org/10.1260/0263617001493693
  52. Lagergren S. and K. Sven, Vetenskapsakademiens Handl, 24, 1 (1898).
  53. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918). https://doi.org/10.1021/ja02242a004
  54. H.M.F. Freundlich, J. Phys. Chem., 57, 385 (1906).
  55. S.M. Alshehri, M. Naushad, T. Ahamad, Z. A. ALOthman and A. Aldalbahi, Chem. Eng. J., 254, 181 (2014). https://doi.org/10.1016/j.cej.2014.05.100
  56. Q. Wang, X. Chang, D. Li, Z. Hu, R. Li and Q. He, J. Hazard. Mater., 186, 1076 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.107
  57. J. Dong, Z. Xu and F. Wang, Appl. Surf. Sci., 254, 3522 (2008). https://doi.org/10.1016/j.apsusc.2007.11.048
  58. J. Karthikeyan and M. Chaudhuri, Water Res., 20, 449 (1986). https://doi.org/10.1016/0043-1354(86)90192-2
  59. A.K. Meena, K. Kadirvelu, G. K. Mishra, C. Rajagopal and P.N. Nagar, J. Hazard. Mater., 150, 604 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.030
  60. D.M. Manohar, K.A. Krishnan and T. S. Anirudhan, Water Res., 36, 1609 (2002). https://doi.org/10.1016/S0043-1354(01)00362-1
  61. Z. Tan, J. Qiu, H. Zeng, H. Liu and J. Xiang, Fuel, 90, 1471 (2011). https://doi.org/10.1016/j.fuel.2010.12.004
  62. J. Goel, K. Kadirvelu and C. Rajagopal Adsorpt. Sci. Technol., 22, 257 (2004). https://doi.org/10.1260/0263617041503453
  63. D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan and A. H. Al-Muhtaseb, Int. J. Biol. Macromol., 87, 366 (2016). https://doi.org/10.1016/j.ijbiomac.2016.02.073
  64. R. Katwal, H. Kaur, G. Sharma, M. Naushad and D. Pathania, J. Ind. Eng. Chem., 31, 173 (2015). https://doi.org/10.1016/j.jiec.2015.06.021

Cited by

  1. Impact of heavy metals and nanoparticles on aquatic biota vol.16, pp.3, 2018, https://doi.org/10.1007/s10311-018-0737-4
  2. Novel ion-imprinted adsorbent for lead removal from aqueous solutions, selectivity and adsorption capacity improvement, and evaluation of adsorption isotherms and kinetic vol.53, pp.15, 2017, https://doi.org/10.1080/01496395.2018.1459703
  3. Studies on the Structural, Morphological, Optical, Electro Chemical and Antimicrobial Activity of Bare, Cu and Ag @ WO3 Nanoplates by Hydrothermal Method vol.28, pp.4, 2017, https://doi.org/10.1007/s10904-018-0846-3
  4. Sol-gel synthesis of Ag-doped titania-coated carbon nanotubes and study their biomedical applications vol.74, pp.1, 2020, https://doi.org/10.1007/s11696-019-00869-9
  5. Properties of multifunctional composite materials based on nanomaterials: a review vol.10, pp.28, 2017, https://doi.org/10.1039/c9ra10594h
  6. Synthesis and bacterial inhibition of novel Ag2S-N-CQD composite material vol.74, pp.5, 2017, https://doi.org/10.1007/s11696-019-01006-2
  7. Preparation and Characterization of a Starch‐Based Adsorbent for the Effective Removal of Environmental Pollutants Hg (II) vol.72, pp.11, 2020, https://doi.org/10.1002/star.201900148
  8. Metal/metal oxide nanocomposites for bactericidal effect: A review vol.272, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2020.128607