DOI QR코드

DOI QR Code

Controllability of separate heat pump distillation for separating isopropanol-chlorobenzene mixture

  • Zhu, Zhaoyou (College of Chemical Engineering, Qingdao University of Science and Technology) ;
  • Liu, Xingzhen (College of Chemical Engineering, Qingdao University of Science and Technology) ;
  • Cao, Yujuan (College of Chemical Engineering, Qingdao University of Science and Technology) ;
  • Liang, Shisheng (College of Chemical Engineering, Qingdao University of Science and Technology) ;
  • Wang, Yinglong (College of Chemical Engineering, Qingdao University of Science and Technology)
  • Received : 2016.08.27
  • Accepted : 2016.11.03
  • Published : 2017.03.01

Abstract

The isopropanol-chlorobenzene mixture is separated via separate heat pump distillation (SHPD) to achieve significant energy savings. Rigorous steady state and dynamic characteristics for this SHPD process are simulated using Aspen Plus and Aspen Plus Dynamics. Optimized operation conditions including vapor flow rate to compressor are developed on the condition of minimum total annual cost. Two control strategies are proposed to solve feed disturbance issues and the improved structure with $Q_{Re}/F$ (lower column reboiler duty/feed flow rate) ratio scheme can maintain the two product purities requirement with smaller transient deviation and shorter settling time.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. A. Gorak and E. Sorensen, Distillation Fundamentals and Principles, Elsevier, Oxford, UK (2014).
  2. A. A. Kiss, S. J. F. Landaeta and C. A. I. Ferreira, Energy, 47, 531 (2012). https://doi.org/10.1016/j.energy.2012.09.038
  3. M. Yang, X. Feng and G. Liu, Appl. Energy, 162, 1 (2016). https://doi.org/10.1016/j.apenergy.2015.10.044
  4. G. Dunnebier and C.C. Pantelides, Ind. Eng. Chem. Res., 38, 162 (1999). https://doi.org/10.1021/ie9802919
  5. M. Kinoshita and Y. Naruse, Fusion Sci. Technol., 2, 410 (1982). https://doi.org/10.13182/FST82-A20773
  6. E. Lu, X. Li and Z. Wu, Chem. Eng. (China), 11, 019 (2008).
  7. R. Palacios-Bereche, A.V. Ensinas, M. Modesto and S.A. Nebra, Energy, 82, 512 (2015). https://doi.org/10.1016/j.energy.2015.01.062
  8. Z. Zhu, L. Wang, Y. Ma, W. Wang and Y. Wang, Comput. Chem. Eng., 76, 137 (2015). https://doi.org/10.1016/j.compchemeng.2015.02.016
  9. R. Li, Q. Ye, X. Suo, X. Dai and H. Yu, Chem. Eng. Res. Design, 105, 1 (2016). https://doi.org/10.1016/j.cherd.2015.10.038
  10. Z. Zhu, D. Xu, X. Liu, Z. Zhang and Y. Wang, Sep. Purif. Technol., 169, 66 (2016). https://doi.org/10.1016/j.seppur.2016.06.009
  11. X. You, I. Rodriguez-Donis and V. Gerbaud, Appl. Energy, 166, 128 (2016). https://doi.org/10.1016/j.apenergy.2016.01.028
  12. Y.C. Wu, H.-Y. Lee, H.-P. Huang and I.-L. Chien, Ind. Eng. Chem. Res., 53, 1537 (2014). https://doi.org/10.1021/ie403136m
  13. C. Enweremadu, A. Waheed and J. Ojediran, Energy for Sustainable Development, 13, 96 (2009). https://doi.org/10.1016/j.esd.2009.05.001
  14. K. Chua, S. Chou and W. Yang, Appl. Energy, 87, 3611 (2010). https://doi.org/10.1016/j.apenergy.2010.06.014
  15. H. Shahandeh, M. Jafari, N. Kasiri and J. Ivakpour, Energy, 80, 496 (2014).
  16. M. Waheed, A. Oni, S. Adejuyigbe, B. Adewumi and D. Fadare, Appl. Energy, 114, 69 (2014). https://doi.org/10.1016/j.apenergy.2013.09.024
  17. X. Gao, J. Chen, Z. Ma and L. Yang, Ind. Eng. Chem. Res., 53, 14440 (2014). https://doi.org/10.1021/ie502695x
  18. R. Li, Q. Ye, X. Suo, X. Dai, H. Yu, S. Feng and H. Xia, Ind. Eng. Chem. Res., 55, 6454 (2016). https://doi.org/10.1021/acs.iecr.6b00937
  19. H. Li, H. Cong, X. Li, X. Li and X. Gao, Appl. Therm. Eng., 105, 93 (2016). https://doi.org/10.1016/j.applthermaleng.2016.05.141
  20. E. Diez, P. Langston, G. Ovejero and M.D. Romero, Appl. Therm. Eng., 29, 1216 (2009). https://doi.org/10.1016/j.applthermaleng.2008.06.013
  21. P. Zhu and X. Feng, Canadian J. Chem. Eng., 81, 963 (2003).
  22. X. Gao, Z. Ma, L. Yang and J. Ma, Ind. Eng. Chem. Res., 52, 11695 (2013). https://doi.org/10.1021/ie401467r
  23. Y. Wang, Z. Zhang, H. Zhang and Q. Zhang, Ind. Eng. Chem. Res., 54, 1646 (2015). https://doi.org/10.1021/ie505024q
  24. M. Errico, C. Ramirez-Marquez, C. E. Torres Ortega, B. G. Rong and J.G. Segovia-Hernandez, J. Chem. Technol. Biot., 90, 2180 (2015). https://doi.org/10.1002/jctb.4529
  25. Y. Wang, Z. Zhang, Y. Zhao, S. Liang and G. Bu, Ind. Eng. Chem. Res., 54, 8533 (2015). https://doi.org/10.1021/acs.iecr.5b01642
  26. Y. Wang, S. Liang, G. Bu, W. Liu, Z. Zhang and Z. Zhu, Ind. Eng. Chem. Res., 54, 12908 (2015). https://doi.org/10.1021/acs.iecr.5b03666
  27. Q. Wang, B. Yu and C. Xu, Ind. Eng. Chem. Res., 51, 1281 (2012). https://doi.org/10.1021/ie201946d
  28. J. Qin, Q. Ye, X. Xiong and N. Li, Ind. Eng. Chem. Res., 52, 10754 (2013). https://doi.org/10.1021/ie401101c
  29. H. Yu, Q. Ye, H. Xu, H. Zhang and X. Dai, Ind. Eng. Chem. Res., 54, 3384 (2015). https://doi.org/10.1021/ie504325g
  30. C.A. Muhrer, M. A. Collura and W. L. Luyben, Ind. Eng. Chem. Res., 29, 59 (1990). https://doi.org/10.1021/ie00097a010
  31. G. Karami, M. Amidpour, B. H. Sheibani and G.R. Salehi, Chem. Eng. Processing: Process Intensification, 97, 23 (2015). https://doi.org/10.1016/j.cep.2015.08.005
  32. S. S. Jogwar and P. Daoutidis, J. Process Control, 19, 1737 (2009). https://doi.org/10.1016/j.jprocont.2009.07.001
  33. G.U. B. Babu and A.K. Jana, Appl. Therm. Eng., 62, 365 (2014). https://doi.org/10.1016/j.applthermaleng.2013.09.057
  34. B. Yu, Q. Wang and C. Xu, Ind. Eng. Chem. Res., 51, 1293 (2012). https://doi.org/10.1021/ie201949q
  35. H. Zhang, Q. Ye, J. Qin, H. Xu and N. Li, Ind. Eng. Chem. Res., 53, 1189 (2013).
  36. A. Dejoz, V. Gonzalez-Alfaro, F. J. Llopis, P. J. Miguel, M. I. Vazquez, A. Dejoz, V. Gonzalez-Alfaro, F. J. Llopis, P. J. Miguel and M. I. Vazquez, Fluid Phase Equilibr., 134, 151 (1997). https://doi.org/10.1016/S0378-3812(97)00028-9
  37. R. Turton, R. C. Bailie, W.B. Whiting and J. A. Shaelwitz, Analysis, Synthesis and Design of Chemical Processes, 2nd Ed., Prentice Hall, Upper Saddle River, NJ (2008).
  38. W. L. Luyben, Distillation design and control using Aspen simulation, Wiley (2013).

Cited by

  1. Heat Integration and Control of a Triple-Column Pressure-Swing Distillation Process vol.56, pp.8, 2017, https://doi.org/10.1021/acs.iecr.6b04118
  2. Design and Control of a Heat Pump-Assisted Azeotropic Dividing Wall Column for EDA/Water Separation vol.56, pp.34, 2017, https://doi.org/10.1021/acs.iecr.7b02466