DOI QR코드

DOI QR Code

Effect of Ethylene Vinyl Alcohol and Cellulose Acetate Butyrate on Drug Release and Mechanical Property of Drug-eluting Stent

약물 방출 스텐트의 약물 방출 및 기계적 특성에 Ethylene Vinyl Alcohol와 Cellulose Acetate Butyrate가 미치는 영향

  • Received : 2017.02.16
  • Accepted : 2017.02.22
  • Published : 2017.03.31

Abstract

Although drug-eluting stents have reduced the problem of restenosis, such stents exhibit side effects such as inhibition of reendothelialization and inflammatory reactions due to persistent drug reactions and sensitivity of polymers. To solve this problem, suppressing the continuous drug reaction by controlling drug release behavior induce rapid vascular re-endothelization. In this study, we attempted to control drug release from a paclitaxel- and cilostazol-containing stent using ethylene vinyl alcohol (EVOH). We then used a scanning electron microscope and atomic force microscope to observe changes on the surface of the drug-releasing stent following the inclusion of EVOH in comparison with stent without EVOH. There were almost no differences on the surface of the drug-eluting stent due to EVOH. The drug release was initially higher in the EVOH-containing stent compared to the stent without EVOH, and the degradation behavior of the polymer not affected by addition of EVOH. Cytotoxicity of the stent containing EVOH was evaluated. EVOH did not exhibit any cytotoxicity due to the degree of controlled release of the drug. Additionally, mechanical property of stent was confirmed by using EVOH and cellulose acetate butyrate (CAB). Radial force increased in stent with EVOH compared to without EVOH although flexibility was not changed. These results suggest that the application of EVOH to drug-eluting stents does not affect the degradation behavior of the stent surface and polymer, but it could be expected to suppress the sustained and excessive response of the drug by rapid release of the drug.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Kamath, K. R., Barry, J. J., and Miller, K. M.: The $Taxus^{TM}$ drug-eluting stent: A new paradigm in controlled drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 412-436. https://doi.org/10.1016/j.addr.2006.01.023
  2. Stone, G. W., Ellis, S. G., Cox, D. A., Hermiller, J., O'shaughnessy, C., Mann, J. T., Turco, M., Caputo, R., Bergin, P., Greenberg, J., Popma, J. J., and Russell, M. E.: A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 2004, 350, 221-231. https://doi.org/10.1056/NEJMoa032441
  3. Moses, J. W., Leon, M. B., Popma, J. J., Fitzgerald, P. J., Holmes, D. R., O'shaughnessy, C. Caputo, R. P., Kereiakes, D. J., Williams, D. O., Teirstein, P. S., Jaeger, J. L., and Kuntz, R. E.: Sirolimus eluting stents versus standard stents in patients with stenosis in native coronary artery. N. Engl. J. Med. 2003, 349, 1315-1323. https://doi.org/10.1056/NEJMoa035071
  4. Morice, M. C., Serruys, P. W., Sousa, J. E., Fajadet, J., Hayashi, E. B., Perin, M., Cplombo, A., Schuler, G., Barragan, P., Guagliumi, G., Molnar, F., and Falotico, R.: A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 2002, 346, 1773-1780. https://doi.org/10.1056/NEJMoa012843
  5. Belotti, D., Vergani, V., Drudis, T., Borsotti, P., Pitelli, M. R., Viale, G., Giavazzi, R., and Taraboletti, G.: The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res. 1996, 2, 1843-1849.
  6. Blagosklonny, M. V., Darzynkiewicz, Z., Halicka, H. D., Pozarowski, P., Demidenko, Z. N., Barry, J. J., Kamath, K. R., and Herrmann, R. A.: Paclitaxel induces primary and postmitotic G1 arrest in human arterial smooth muscle cells. Cell Cycle 2004, 3, 1050-1056.
  7. Jordan, M. A. and Wilson, L.: Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253-265. https://doi.org/10.1038/nrc1317
  8. Jordan, M. A., Toso, R. J., Thrower, D., and Wilson, L.: Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA 1993, 90, 9552-9556. https://doi.org/10.1073/pnas.90.20.9552
  9. Luscher, T. F., Steffel, J., Eberli, F. R., Joner, M., Nakazawa, G., Tanner, F. C., and Virmani, R.: Drug-eluting stent and coronary thrombosis. Circulation 2007, 115, 1051-1058. https://doi.org/10.1161/CIRCULATIONAHA.106.675934
  10. Suzuki, T., Kopia, G., Hayashi, S. I., Bailey, L. R., Llanos, G., Wilensky, R., Klugherz, B. D., Papandreou, G., Narayan, P., Leon, M. B., Yeung, A. C., Tio, F., Tsao, P. S., Falotico, R., and Carter, A. J.: Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 2001, 104, 1188-1193. https://doi.org/10.1161/hc3601.093987
  11. Finn, A. V., Kolodgie, F. D., Harnek, J., Guerrero, L. J., Acampado, E., Tefera, K., Skorija, K., Weber, D. K., Gold, H. K., and Virmani, R.: Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimusor paclitaxel-eluting stents. Circulation 2005, 112, 270-278. https://doi.org/10.1161/CIRCULATIONAHA.104.508937
  12. Ranade, S. V., Miller, K. M., Richard, R. E., Chan, A. K., Allen, M. J., and Helmus, M. N.: Physical characterization of controlled release of paclitaxel from the $TAXUS^{TM}$ $Express2^{TM}$ drug-eluting stent. J. Biomed. Mater. Res. A 2004, 71, 625-634.
  13. Langer, R.: New methods of drug delivery. Science 1990, 249, 1527-1533. https://doi.org/10.1126/science.2218494
  14. Acharya, G. and Park, K.: Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev. 2006, 58, 387-401. https://doi.org/10.1016/j.addr.2006.01.016
  15. Aucejo, S., Marco, C., and Gavara, R.: Water effect on the morphology of EVOH copolymers. J. Appl. Polym. Sci. 1999, 74, 1201-1206. https://doi.org/10.1002/(SICI)1097-4628(19991031)74:5<1201::AID-APP17>3.0.CO;2-8
  16. Kenawy, E. R., Layman, J. M., Watkins, J. R., Bowlin, G. L., Matthews, J. A., Simpson, D. G., and Wnek, G. E.: Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials 2003, 24, 907-913. https://doi.org/10.1016/S0142-9612(02)00422-2
  17. Wu, M., Kleiner, L., Tang, F. W., Hossainy, S., Davies, M. C., and Roberts, C. J.: Surface characterization of poly(lactic acid)/everolimus and poly(ethylene vinyl alcohol)/everolimus stents. Drug Delivery 2010, 17, 376-384. https://doi.org/10.3109/10717541003762847
  18. Matsumura, K., Hyon, S. H., Nakajima, N., Peng, C., and Tsutsumi, S.: Surface modification of poly(ethylene-co-vinyl alcohol) (EVA). Part I. Introduction of carboxyl groups and immobilization of collagen. J. Biomed. Mater. Res. 2000, 50, 512-517. https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<512::AID-JBM6>3.0.CO;2-G
  19. Molyneux, A. J. and Coley, S. C.: Embolization of spinal cord arteriovenous malformations with an ethylene vinyl alcohol copolymer dissolved in dimethyl sulfoxide (onyx liquid embolic system). Report of two cases. J. Neurosurg. 2000, 93, 304-308.
  20. Peng, C., Tsutsumi, S., Matsumura, K., Nakajima, N., and Hyon, S. H.: Morphologic study and syntheses of type I collagen and fibronectin of human periodontal ligament cells cultured on poly(ethylene-co-vinyl alcohol)(EVA) with collagen immobilization. J. Biomed. Mater. Res. 2000, 54, 241-246.
  21. Oyane, A., Minoda, M., Miyamoto, T., Takahashi, R., Nakanishi, K., Kim, H. M., Kokubo, T., and Nakamura, T.: Apatite formation on ethylene-vinyl alcohol copolymer modified with silanol groups. J. Biomed. Mater. Res. 1999, 47, 367-373. https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<367::AID-JBM11>3.0.CO;2-A
  22. Young, T. H., Yao, C. H., Sun, J. S., Lai, C. P., and Chen, L. W.: The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro. Biomaterials 1998, 19, 717-724. https://doi.org/10.1016/S0142-9612(98)00187-2
  23. Hoenich, N.: Cellulose for medical applications: Past, present and future. Bioresources 2006, 1, 279-280.
  24. Dave, V. and Wolfgang, G.: Cellulose-based fibres from liquid crystalline solutions: 5. Processing and morphology of CAB blends with lignin. Polymer 1997, 38, 2121-2126. https://doi.org/10.1016/S0032-3861(96)00784-7
  25. Kanis, L. A., Marques, E. L., Zepon, K. M., Pereira, J. R., Pamato, S., Oliveira, M. T., Danielski, L., G., and Petronilho, F. C.: Cellulose acetate butyrate/poly(caprolactonetriol) blends: Miscibility, mechanical properties, and in vivo inflammatory response. J. Biomater. App. 2014, 29, 654-661. https://doi.org/10.1177/0885328214542488
  26. Shimizu, T., Osumi, T., Niimi, K., and Nakagawa, K.: Physico-chemical properties and stability of cilostazol. Arzneimittel-Forschung 1985, 35, 1117-1123.
  27. Menown, I. B., Noad, R., Garcia, E. J., and Meredith, I.: The platinum chromium element stent platform: From alloy, to design, to clinical practice. Adv. Ther. 2010, 27, 129-141. https://doi.org/10.1007/s12325-010-0022-9
  28. Bennett, J. and Dubois, C.: A novel platinum chromium everolimus-eluting stent for the treatment of coronary artery disease. Biologics 2013, 7, 149-159.